Suppr超能文献

价值驱动的注意力和联想学习模型:计算模拟分析

Value-driven attention and associative learning models: a computational simulation analysis.

作者信息

Jeong Ji Hoon, Ju Jangkyu, Kim Sunghyun, Choi June-Seek, Cho Yang Seok

机构信息

School of Psychology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea.

出版信息

Psychon Bull Rev. 2023 Oct;30(5):1689-1706. doi: 10.3758/s13423-023-02296-0. Epub 2023 May 5.

Abstract

Value-driven attentional capture (VDAC) refers to a phenomenon by which stimulus features associated with greater reward value attract more attention than those associated with smaller reward value. To date, the majority of VDAC research has revealed that the relationship between reward history and attentional allocation follows associative learning rules. Accordingly, a mathematical implementation of associative learning models and multiple comparison between them can elucidate the underlying process and properties of VDAC. In this study, we implemented the Rescorla-Wagner, Mackintosh (Mac), Schumajuk-Pearce-Hall (SPH), and Esber-Haselgrove (EH) models to determine whether different models predict different outcomes when critical parameters in VDAC were adjusted. Simulation results were compared with experimental data from a series of VDAC studies by fitting two key model parameters, associative strength (V) and associability (α), using the Bayesian information criterion as a loss function. The results showed that SPH-V and EH- α outperformed other implementations of phenomena related to VDAC, such as expected value, training session, switching (or inertia), and uncertainty. Although V of models were sufficient to simulate VDAC when the expected value was the main manipulation of the experiment, α of models could predict additional aspects of VDAC, including uncertainty and resistance to extinction. In summary, associative learning models concur with the crucial aspects of behavioral data from VDAC experiments and elucidate underlying dynamics including novel predictions that need to be verified.

摘要

价值驱动的注意捕获(VDAC)是指一种现象,即与更大奖励价值相关的刺激特征比与较小奖励价值相关的刺激特征吸引更多的注意力。迄今为止,大多数VDAC研究表明,奖励历史与注意力分配之间的关系遵循联想学习规则。因此,联想学习模型的数学实现及其之间的多重比较可以阐明VDAC的潜在过程和特性。在本研究中,我们实现了雷斯克拉-瓦格纳模型、麦金托什(Mac)模型、舒马朱克-皮尔斯-霍尔(SPH)模型和埃斯伯-哈塞尔格罗夫(EH)模型,以确定当调整VDAC中的关键参数时,不同模型是否预测不同的结果。通过将两个关键模型参数,即联想强度(V)和联想性(α),拟合为贝叶斯信息准则作为损失函数,将模拟结果与一系列VDAC研究的实验数据进行比较。结果表明,SPH-V和EH-α在模拟与VDAC相关的现象方面优于其他模型,如预期价值、训练阶段、转换(或惯性)和不确定性。虽然当预期价值是实验的主要操纵因素时,模型的V足以模拟VDAC,但模型的α可以预测VDAC的其他方面,包括不确定性和抗消退性。总之,联想学习模型与VDAC实验的行为数据的关键方面一致,并阐明了潜在的动态过程,包括需要验证的新预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验