Suppr超能文献

利用位置发放神经元增强事件驱动的触觉学习。

Boost event-driven tactile learning with location spiking neurons.

作者信息

Kang Peng, Banerjee Srutarshi, Chopp Henry, Katsaggelos Aggelos, Cossairt Oliver

机构信息

Department of Computer Science, Northwestern University, Evanston, IL, United States.

Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States.

出版信息

Front Neurosci. 2023 Apr 21;17:1127537. doi: 10.3389/fnins.2023.1127537. eCollection 2023.

Abstract

Tactile sensing is essential for a variety of daily tasks. Inspired by the event-driven nature and sparse spiking communication of the biological systems, recent advances in event-driven tactile sensors and Spiking Neural Networks (SNNs) spur the research in related fields. However, SNN-enabled event-driven tactile learning is still in its infancy due to the limited representation abilities of existing spiking neurons and high spatio-temporal complexity in the event-driven tactile data. In this paper, to improve the representation capability of existing spiking neurons, we propose a novel neuron model called "location spiking neuron," which enables us to extract features of event-based data in a novel way. Specifically, based on the classical Time Spike Response Model (TSRM), we develop the Location Spike Response Model (LSRM). In addition, based on the most commonly-used Time Leaky Integrate-and-Fire (TLIF) model, we develop the Location Leaky Integrate-and-Fire (LLIF) model. Moreover, to demonstrate the representation effectiveness of our proposed neurons and capture the complex spatio-temporal dependencies in the event-driven tactile data, we exploit the location spiking neurons to propose two hybrid models for event-driven tactile learning. Specifically, the first hybrid model combines a fully-connected SNN with TSRM neurons and a fully-connected SNN with LSRM neurons. And the second hybrid model fuses the spatial spiking graph neural network with TLIF neurons and the temporal spiking graph neural network with LLIF neurons. Extensive experiments demonstrate the significant improvements of our models over the state-of-the-art methods on event-driven tactile learning, including event-driven tactile object recognition and event-driven slip detection. Moreover, compared to the counterpart artificial neural networks (ANNs), our SNN models are 10× to 100× energy-efficient, which shows the superior energy efficiency of our models and may bring new opportunities to the spike-based learning community and neuromorphic engineering. Finally, we thoroughly examine the advantages and limitations of various spiking neurons and discuss the broad applicability and potential impact of this work on other spike-based learning applications.

摘要

触觉感知对于各种日常任务至关重要。受生物系统的事件驱动特性和稀疏脉冲通信的启发,事件驱动触觉传感器和脉冲神经网络(SNN)的最新进展推动了相关领域的研究。然而,由于现有脉冲神经元的表示能力有限以及事件驱动触觉数据中的高时空复杂性,基于SNN的事件驱动触觉学习仍处于起步阶段。在本文中,为了提高现有脉冲神经元的表示能力,我们提出了一种名为“位置脉冲神经元”的新型神经元模型,这使我们能够以一种新颖的方式提取基于事件的数据的特征。具体而言,基于经典的时间脉冲响应模型(TSRM),我们开发了位置脉冲响应模型(LSRM)。此外,基于最常用的时间泄漏积分发放(TLIF)模型,我们开发了位置泄漏积分发放(LLIF)模型。此外,为了证明我们提出的神经元的表示有效性并捕捉事件驱动触觉数据中的复杂时空依赖性,我们利用位置脉冲神经元提出了两种用于事件驱动触觉学习的混合模型。具体来说,第一个混合模型将一个具有TSRM神经元的全连接SNN和一个具有LSRM神经元的全连接SNN相结合。第二个混合模型将具有TLIF神经元的空间脉冲图神经网络与具有LLIF神经元的时间脉冲图神经网络相融合。大量实验表明,我们的模型在事件驱动触觉学习方面,包括事件驱动触觉物体识别和事件驱动滑动检测,比现有最先进的方法有显著改进。此外,与对应的人工神经网络(ANN)相比,我们的SNN模型的能源效率提高了10倍到100倍,这表明了我们模型卓越的能源效率,并可能为基于脉冲的学习社区和神经形态工程带来新的机遇。最后,我们全面研究了各种脉冲神经元的优缺点,并讨论了这项工作在其他基于脉冲的学习应用中的广泛适用性和潜在影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/818e/10160479/c3ba22462fda/fnins-17-1127537-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验