Suppr超能文献

每日出行距离对新冠病毒传播的影响:一种人工神经网络模型

Impacts of Daily Travel by Distances on the Spread of COVID-19: An Artificial Neural Network Model.

作者信息

Truong Dothang, Truong My D

机构信息

School of Graduate Studies, Embry-Riddle Aeronautical University, Daytona Beach, FL.

College of Business, University of Central Florida, Orlando, FL.

出版信息

Transp Res Rec. 2023 Apr;2677(4):934-945. doi: 10.1177/03611981211066899. Epub 2022 Jan 29.

Abstract

The continued spread of COVID-19 poses significant threats to the safety of the community. Since it is still uncertain when the pandemic will end, it is vital to understand the factors contributing to new cases of COVID-19, especially from the transportation perspective. This paper examines the effect of the United States residents' daily trips by distances on the spread of COVID-19 in the community. The artificial neural network method is used to construct and test the predictive model using data collected from two sources: Bureau of Transportation Statistics and the COVID-19 Tracking Project. The dataset uses ten daily travel variables by distances and new tests from March to September 2020, with a sample size of 10,914. The results indicate the importance of daily trips at different distances in predicting the spread of COVID-19. More specifically, trips shorter than 3 mi and trips between 250 and 500 mi contribute most to predicting daily new cases of COVID-19. Additionally, daily new tests and trips between 10 and 25 mi are among the variables with the lowest effects. This study's findings can help governmental authorities evaluate the risk of COVID-19 infection based on residents' daily travel behaviors and form necessary strategies to mitigate the risks. The developed neural network can be used to predict the infection rate and construct various scenarios for risk assessment and control.

摘要

新冠病毒病(COVID-19)的持续传播对社区安全构成重大威胁。由于疫情何时结束仍不确定,了解导致COVID-19新病例的因素至关重要,特别是从交通角度来看。本文研究了美国居民按距离划分的日常出行对社区中COVID-19传播的影响。使用人工神经网络方法,利用从两个来源收集的数据构建并测试预测模型:运输统计局和COVID-19追踪项目。该数据集使用了2020年3月至9月按距离划分的十个日常出行变量和新检测数据,样本量为10914。结果表明不同距离的日常出行在预测COVID-19传播方面的重要性。更具体地说,短于3英里的出行以及250至500英里之间的出行对预测COVID-19每日新增病例贡献最大。此外,每日新检测以及10至25英里之间的出行是影响最小的变量之一。本研究的结果可帮助政府当局根据居民的日常出行行为评估COVID-19感染风险,并制定必要的策略来降低风险。所开发的神经网络可用于预测感染率,并构建各种风险评估和控制情景。

相似文献

本文引用的文献

2
Lockdowned: Everyday mobility changes in response to COVID-19.封锁之下:新冠疫情引发的日常出行变化
J Transp Geogr. 2021 Jan;90:102906. doi: 10.1016/j.jtrangeo.2020.102906. Epub 2020 Nov 11.
5
The effect of COVID-19 and subsequent social distancing on travel behavior.新冠疫情及后续社交距离措施对出行行为的影响。
Transp Res Interdiscip Perspect. 2020 May;5:100121. doi: 10.1016/j.trip.2020.100121. Epub 2020 Apr 24.
7
Reduction in mobility and COVID-19 transmission.减少流动性和 COVID-19 的传播。
Nat Commun. 2021 Feb 17;12(1):1090. doi: 10.1038/s41467-021-21358-2.
9
Is it safe to lift COVID-19 travel bans? The Newfoundland story.解除新冠疫情旅行禁令是否安全?纽芬兰的情况
Comput Mech. 2020;66(5):1081-1092. doi: 10.1007/s00466-020-01899-x. Epub 2020 Aug 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验