Opt Express. 2023 May 8;31(10):15355-15371. doi: 10.1364/OE.486213.
X-ray tomography is a non-destructive imaging technique that reveals the interior of an object from its projections at different angles. Under sparse-view and low-photon sampling, regularization priors are required to retrieve a high-fidelity reconstruction. Recently, deep learning has been used in X-ray tomography. The prior learned from training data replaces the general-purpose priors in iterative algorithms, achieving high-quality reconstructions with a neural network. Previous studies typically assume the noise statistics of test data are acquired a priori from training data, leaving the network susceptible to a change in the noise characteristics under practical imaging conditions. In this work, we propose a noise-resilient deep-reconstruction algorithm and apply it to integrated circuit tomography. By training the network with regularized reconstructions from a conventional algorithm, the learned prior shows strong noise resilience without the need for additional training with noisy examples, and allows us to obtain acceptable reconstructions with fewer photons in test data. The advantages of our framework may further enable low-photon tomographic imaging where long acquisition times limit the ability to acquire a large training set.
X 射线断层摄影术是一种非破坏性的成像技术,它可以从不同角度的物体投影中揭示物体的内部。在稀疏视图和低光子采样下,需要正则化先验来恢复高保真的重建。最近,深度学习已被应用于 X 射线断层摄影术。从训练数据中学习到的先验取代了迭代算法中的通用先验,通过神经网络实现了高质量的重建。以前的研究通常假设测试数据的噪声统计信息是从训练数据中事先获取的,这使得网络容易受到实际成像条件下噪声特征变化的影响。在这项工作中,我们提出了一种抗噪的深度重建算法,并将其应用于集成电路断层摄影术。通过使用传统算法的正则化重建来训练网络,所学习到的先验具有很强的抗噪能力,无需使用带噪示例进行额外的训练,并且允许我们在测试数据中使用较少的光子获得可接受的重建。我们的框架的优点可能进一步实现低光子断层成像,其中长采集时间限制了获取大训练集的能力。