California Institute of Technology, Pasadena, CA, United States of America.
T&C Chen Brain-Machine Interface Center at Caltech, Pasadena, CA, United States of America.
J Neural Eng. 2023 May 25;20(3):036020. doi: 10.1088/1741-2552/acd3b1.
. Enable neural control of individual prosthetic fingers for participants with upper-limb paralysis.. Two tetraplegic participants were each implanted with a 96-channel array in the left posterior parietal cortex (PPC). One of the participants was additionally implanted with a 96-channel array near the hand knob of the left motor cortex (MC). Across tens of sessions, we recorded neural activity while the participants attempted to move individual fingers of the right hand. Offline, we classified attempted finger movements from neural firing rates using linear discriminant analysis with cross-validation. The participants then used the neural classifier online to control individual fingers of a brain-machine interface (BMI). Finally, we characterized the neural representational geometry during individual finger movements of both hands.. The two participants achieved 86% and 92% online accuracy during BMI control of the contralateral fingers (chance = 17%). Offline, a linear decoder achieved ten-finger decoding accuracies of 70% and 66% using respective PPC recordings and 75% using MC recordings (chance = 10%). In MC and in one PPC array, a factorized code linked corresponding finger movements of the contralateral and ipsilateral hands.. This is the first study to decode both contralateral and ipsilateral finger movements from PPC. Online BMI control of contralateral fingers exceeded that of previous finger BMIs. PPC and MC signals can be used to control individual prosthetic fingers, which may contribute to a hand restoration strategy for people with tetraplegia.
. 实现对瘫痪上肢患者个体假肢手指的神经控制。.. 两名四肢瘫痪参与者分别在左顶后皮质(PPC)植入了一个 96 通道阵列。其中一名参与者还在左运动皮质(MC)的手把附近植入了一个 96 通道阵列。在数十次会议中,我们记录了参与者试图移动右手的单个手指时的神经活动。在线下,我们使用交叉验证的线性判别分析从神经放电率中分类尝试的手指运动。然后,参与者使用神经分类器在线控制脑机接口(BMI)的单个手指。最后,我们描述了双手的单个手指运动期间的神经代表性几何形状。.. 两名参与者在 BMI 对对手手指的控制中分别实现了 86%和 92%的在线准确性(机会 = 17%)。在线下,使用各自的 PPC 记录,线性解码器实现了十指解码精度为 70%和 66%,使用 MC 记录则为 75%(机会 = 10%)。在 MC 和一个 PPC 阵列中,一个因子化代码链接了对手和同侧手的对应手指运动。.. 这是第一项从 PPC 解码对手和同侧手指运动的研究。对手手指的在线 BMI 控制超过了之前的手指 BMI。PPC 和 MC 信号可用于控制个体假肢手指,这可能有助于四肢瘫痪患者的手恢复策略。