Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
Microbiol Spectr. 2023 Jun 15;11(3):e0004523. doi: 10.1128/spectrum.00045-23. Epub 2023 May 11.
Staphylococcus aureus is an important human pathogen and brings about many community-acquired, hospital-acquired, and biofilm-associated infections worldwide. It tends to form biofilms, triggering the release of toxins and initiating resistance mechanisms. As a result of the development of S. aureus tolerance to antibiotics, there are few drugs can availably control biofilm-associated infections. In this study, we synthesized a novel small-molecule compound CY-158-11 (CHClNOSe) and proved its inhibitory effect on the biofilm formation of S. aureus at a subinhibitory concentration (1/8 MIC). The subinhibitory concentration of CY-158-11 not only did not affect the growth of bacteria but also had no toxicity to A549 cells or G. mellonella. Total biofilm biomass was investigated by crystal violet staining, and the results were confirmed by SYTO 9 and PI staining through confocal laser scanning microscopy. Moreover, CY-158-11 effectively prevented initial attachment and repressed the production of PIA instead of autolysis. RT-qPCR analysis also exhibited significant suppression of the genes involved in biofilm formation. Taken together, CY-158-11 exerted its inhibitory effects against the biofilm formation in S. aureus by inhibiting cell adhesion and the expression of related to PIA production. Most bacteria exist in the form of biofilms, often strongly adherent to various surfaces, causing bacterial resistance and chronic infections. In general, antibacterial drugs are not effective against biofilms. The small-molecule compound CY-158-11 inhibited the biofilm formation of S. aureus at a subinhibitory concentration. By hindering adhesion and PIA-mediated biofilm formation, CY-158-11 exhibits antibiofilm activity toward S. aureus. These findings point to a novel therapeutic agent for combating intractable S. aureus-biofilm-related infections.
金黄色葡萄球菌是一种重要的人类病原体,在全球范围内引起许多社区获得性、医院获得性和生物膜相关感染。它倾向于形成生物膜,引发毒素释放并启动耐药机制。由于金黄色葡萄球菌对抗生素的耐受性发展,很少有药物可以有效地控制生物膜相关感染。在这项研究中,我们合成了一种新型小分子化合物 CY-158-11(CHClNOSe),并证明其在亚抑菌浓度(1/8 MIC)下抑制金黄色葡萄球菌生物膜形成的效果。亚抑菌浓度的 CY-158-11 不仅不影响细菌的生长,而且对 A549 细胞或 G. mellonella 也没有毒性。通过结晶紫染色研究总生物膜生物量,并通过共聚焦激光扫描显微镜的 SYTO 9 和 PI 染色进行结果确认。此外,CY-158-11 有效阻止初始附着并抑制 PIA 的产生而不是自溶。RT-qPCR 分析还显示出对生物膜形成相关基因的显著抑制。总之,CY-158-11 通过抑制细胞粘附和与 PIA 产生相关的基因表达来抑制金黄色葡萄球菌生物膜的形成。大多数细菌以生物膜的形式存在,通常强烈附着在各种表面上,导致细菌耐药和慢性感染。一般来说,抗菌药物对生物膜无效。小分子化合物 CY-158-11 在亚抑菌浓度下抑制金黄色葡萄球菌生物膜的形成。通过阻碍粘附和 PIA 介导的生物膜形成,CY-158-11 对金黄色葡萄球菌表现出抗生物膜活性。这些发现为治疗难治性金黄色葡萄球菌生物膜相关感染提供了一种新的治疗剂。