The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Nat Commun. 2023 Apr 25;14(1):2385. doi: 10.1038/s41467-023-37996-7.
Systemic autoimmune rheumatic diseases (SARDs) can lead to irreversible damage if left untreated, yet these patients often endure long diagnostic journeys before being diagnosed and treated. Machine learning may help overcome the challenges of diagnosing SARDs and inform clinical decision-making. Here, we developed and tested a machine learning model to identify patients who should receive rheumatological evaluation for SARDs using longitudinal electronic health records of 161,584 individuals from two institutions. The model demonstrated high performance for predicting cases of autoantibody-tested individuals in a validation set, an external test set, and an independent cohort with a broader case definition. This approach identified more individuals for autoantibody testing compared with current clinical standards and a greater proportion of autoantibody carriers among those tested. Diagnoses of SARDs and other autoimmune conditions increased with higher model probabilities. The model detected a need for autoantibody testing and rheumatology encounters up to five years before the test date and assessment date, respectively. Altogether, these findings illustrate that the clinical manifestations of a diverse array of autoimmune conditions are detectable in electronic health records using machine learning, which may help systematize and accelerate autoimmune testing.
系统性自身免疫性风湿病(SARDs)如果不治疗可能会导致不可逆转的损害,但这些患者在被诊断和治疗之前往往要经历漫长的诊断过程。机器学习可能有助于克服诊断 SARDs 的挑战并为临床决策提供信息。在这里,我们使用来自两个机构的 161,584 个人的纵向电子健康记录,开发并测试了一种机器学习模型,以识别应该接受风湿病评估的 SARDs 患者。该模型在验证集、外部测试集和具有更广泛病例定义的独立队列中对自身抗体检测个体的病例进行预测时表现出了很高的性能。与当前的临床标准相比,该方法可以识别出更多需要进行自身抗体检测的个体,并且在接受检测的个体中,自身抗体携带者的比例更高。SARDs 和其他自身免疫性疾病的诊断随着模型概率的增加而增加。该模型检测到需要进行自身抗体检测和风湿病就诊的时间分别比检测日期和评估日期提前了五年。总之,这些发现表明,使用机器学习可以在电子健康记录中检测到各种自身免疫性疾病的临床表现,这可能有助于使自身免疫性检测系统化和加速。