Xu Di, Xu Qifan, Nhieu Kevin, Ruan Dan, Sheng Ke
Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA.
Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA 94115, USA.
Diagnostics (Basel). 2023 May 8;13(9):1652. doi: 10.3390/diagnostics13091652.
Suppression of thoracic bone shadows on chest X-rays (CXRs) can improve the diagnosis of pulmonary disease. Previous approaches can be categorized as either unsupervised physical models or supervised deep learning models. Physical models can remove the entire ribcage and preserve the morphological lung details but are impractical due to the extremely long processing time. Machine learning (ML) methods are computationally efficient but are limited by the available ground truth (GT) for effective and robust training, resulting in suboptimal results.
To improve bone shadow suppression, we propose a generalizable yet efficient workflow for CXR rib suppression by combining physical and ML methods.
Our pipeline consists of two stages: (1) pair generation with GT bone shadows eliminated by a physical model in spatially transformed gradient fields; and (2) a fully supervised image denoising network trained on stage-one datasets for fast rib removal from incoming CXRs. For stage two, we designed a densely connected network called SADXNet, combined with a peak signal-to-noise ratio and a multi-scale structure similarity index measure as the loss function to suppress the bony structures. SADXNet organizes the spatial filters in a U shape and preserves the feature map dimension throughout the network flow.
Visually, SADXNet can suppress the rib edges near the lung wall/vertebra without compromising the vessel/abnormality conspicuity. Quantitively, it achieves an RMSE of ~0 compared with the physical model generated GTs, during testing with one prediction in <1 s. Downstream tasks, including lung nodule detection as well as common lung disease classification and localization, are used to provide task-specific evaluations of our rib suppression mechanism. We observed a 3.23% and 6.62% AUC increase, as well as 203 (1273 to 1070) and 385 (3029 to 2644) absolute false positive decreases for lung nodule detection and common lung disease localization, respectively.
Through learning from image pairs generated from the physical model, the proposed SADXNet can make a robust sub-second prediction without losing fidelity. Quantitative outcomes from downstream validation further underpin the superiority of SADXNet and the training ML-based rib suppression approaches from the physical model yielded dataset. The training images and SADXNet are provided in the manuscript.
胸部X光(CXR)上胸廓骨影的抑制可改善肺部疾病的诊断。先前的方法可分为无监督物理模型或有监督深度学习模型。物理模型可以去除整个胸腔并保留肺部形态细节,但由于处理时间极长而不切实际。机器学习(ML)方法计算效率高,但受有效且稳健训练所需可用真实数据(GT)的限制,导致结果欠佳。
为改善骨影抑制,我们提出一种通过结合物理和ML方法实现CXR肋骨抑制的通用且高效的工作流程。
我们的流程包括两个阶段:(1)在空间变换梯度场中通过物理模型消除GT骨影来生成图像对;(2)在第一阶段数据集上训练的全监督图像去噪网络,用于从输入的CXR中快速去除肋骨。对于第二阶段,我们设计了一个名为SADXNet的密集连接网络,结合峰值信噪比和多尺度结构相似性指数度量作为损失函数来抑制骨结构。SADXNet将空间滤波器组织成U形,并在整个网络流程中保留特征图维度。
在视觉上,SADXNet可以抑制肺壁/椎骨附近的肋骨边缘,而不影响血管/异常的清晰度。在测试中,与物理模型生成的GT相比,它在不到1秒内进行一次预测时实现了约0的均方根误差(RMSE)。下游任务,包括肺结节检测以及常见肺部疾病分类和定位,用于对我们的肋骨抑制机制进行特定任务评估。我们观察到肺结节检测和常见肺部疾病定位的曲线下面积(AUC)分别增加了3.23%和6.62%,以及绝对假阳性分别减少了203(从1273降至1070)和385(从3029降至2644)。
通过从物理模型生成的图像对中学习,所提出的SADXNet可以在不失保真度的情况下进行强大的亚秒级预测。下游验证的定量结果进一步证实了SADXNet的优越性以及基于物理模型生成数据集训练的基于ML的肋骨抑制方法的优越性。本文提供了训练图像和SADXNet。