Suppr超能文献

验证 Alogo Move Pro:一种基于 GPS 的惯性测量单元,用于客观检查马的步态和跳跃。

Validation of Alogo Move Pro: A GPS-Based Inertial Measurement Unit for the Objective Examination of Gait and Jumping in Horses.

机构信息

Information Science Institute GSEM/CUI, University of Geneva, 1227 Carouge, Switzerland.

Veterinary Department of the Swiss Armed Force, 3003 Berne, Switzerland.

出版信息

Sensors (Basel). 2023 Apr 22;23(9):4196. doi: 10.3390/s23094196.

Abstract

Quantitative information on how well a horse clears a jump has great potential to support the rider in improving the horse's jumping performance. This study investigated the validation of a GPS-based inertial measurement unit, namely Alogo Move Pro, compared with a traditional optical motion capture system. Accuracy and precision of the three jumping characteristics of maximum height (Zmax), stride/jump length (lhorz), and mean horizontal speed (vhorz) were compared. Eleven horse-rider pairs repeated two identical jumps (an upright and an oxer fence) several times ( = 6 to 10) at different heights in a 20 × 60 m tent arena. The ground was a fiber sand surface. The 24 OMC (Oqus 7+, Qualisys) cameras were rigged on aluminum rails suspended 3 m above the ground. The Alogo sensor was placed in a pocket on the protective plate of the saddle girth. Reflective markers placed on and around the Alogo sensor were used to define a rigid body for kinematic analysis. The Alogo sensor data were collected and processed using the Alogo proprietary software; stride-matched OMC data were collected using Qualisys Track Manager and post-processed in Python. Residual analysis and Bland-Altman plots were performed in Python. The Alogo sensor provided measures with relative accuracy in the range of 10.5-20.7% for stride segments and 5.5-29.2% for jump segments. Regarding relative precision, we obtained values in the range of 6.3-14.5% for stride segments and 2.8-18.2% for jump segments. These accuracy differences were deemed good under field study conditions where GPS signal strength might have been suboptimal.

摘要

关于马跳跃腾空高度的定量信息,对于帮助骑手提升马匹跳跃性能具有重要意义。本研究旨在验证基于 GPS 的惯性测量单元(即 Alogo Move Pro)的准确性和精度,将其与传统光学运动捕捉系统进行对比。本研究比较了最大高度(Zmax)、步幅/跳跃长度(lhorz)和平均水平速度(vhorz)这三个跳跃特征的精度和重复性。11 对人马组合在一个 20×60 米的帐篷竞技场中,以不同高度重复进行了两次相同的跳跃(一个垂直障碍和一个奥格尔障碍),重复次数为 6 到 10 次。地面为纤维沙表面。24 个 OMC(Oqus 7+,Qualisys)摄像机安装在距地面 3 米高的铝轨上。Alogo 传感器放置在鞍座下的保护板的口袋中。在 Alogo 传感器上及其周围放置了反光标记,以定义运动学分析的刚体。Alogo 传感器数据使用 Alogo 专有软件进行收集和处理;使用 Qualisys Track Manager 收集与步幅匹配的 OMC 数据,并在 Python 中进行后处理。在 Python 中进行了残差分析和 Bland-Altman 图分析。Alogo 传感器提供的测量结果的相对精度范围为 10.5%至 20.7%,步幅段的相对精度范围为 5.5%至 29.2%,跳跃段的相对精度范围为 6.3%至 14.5%,跳跃段的相对精度范围为 2.8%至 18.2%。在 GPS 信号强度可能不理想的野外研究条件下,这些精度差异被认为是良好的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8388/10181332/f364b88ada60/sensors-23-04196-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验