Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Postal Number 590, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and HumboldtUniversität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
Sci Rep. 2022 Nov 15;12(1):19596. doi: 10.1038/s41598-022-23445-w.
Mandibular fractures are among the most frequent facial traumas in oral and maxillofacial surgery, accounting for 57% of cases. An accurate diagnosis and appropriate treatment plan are vital in achieving optimal re-establishment of occlusion, function and facial aesthetics. This study aims to detect mandibular fractures on panoramic radiographs (PR) automatically. 1624 PR with fractures were manually annotated and labelled as a reference. A deep learning approach based on Faster R-CNN and Swin-Transformer was trained and validated on 1640 PR with and without fractures. Subsequently, the trained algorithm was applied to a test set consisting of 149 PR with and 171 PR without fractures. The detection accuracy and the area-under-the-curve (AUC) were calculated. The proposed method achieved an F1 score of 0.947 and an AUC of 0.977. Deep learning-based assistance of clinicians may reduce the misdiagnosis and hence the severe complications.
下颌骨骨折是口腔颌面外科最常见的面部创伤之一,占病例的 57%。准确的诊断和适当的治疗计划对于实现咬合、功能和面部美学的最佳重建至关重要。本研究旨在自动检测全景片(PR)中的下颌骨骨折。对 1624 张有骨折的 PR 进行了手动标注和标记作为参考。在有和没有骨折的 1640 张 PR 上,基于 Faster R-CNN 和 Swin-Transformer 的深度学习方法进行了训练和验证。随后,将训练好的算法应用于包含 149 张有骨折和 171 张无骨折的 PR 的测试集。计算了检测准确性和曲线下面积(AUC)。所提出的方法获得了 0.947 的 F1 分数和 0.977 的 AUC。基于深度学习的临床医生辅助可能会减少误诊,从而减少严重并发症。