Suppr超能文献

用于组织工程的混合水凝胶材料的3D打印:批判性综述

3D Printing of Hybrid-Hydrogel Materials for Tissue Engineering: a Critical Review.

作者信息

Tajik Sanaz, Garcia Camila Negron, Gillooley Samantha, Tayebi Lobat

机构信息

Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.

出版信息

Regen Eng Transl Med. 2023 Mar;9(1):29-41. doi: 10.1007/s40883-022-00267-w. Epub 2022 Aug 1.

Abstract

PURPOSE

Key natural polymers, known as hydrogels, are an important group of materials in design of tissue-engineered constructs that can provide suitable habitat for cell attachment and proliferation. However, in comparison to tissues within the body, these hydrogels display poor mechanical properties. Such properties cause challenges in 3D printing of hydrogel scaffolds as well as their surgical handling after fabrication. For this reason, the purpose of this study is to critically review the 3D printing processes of hydrogels and their characteristics for tissue engineering application.

METHODS

A search of Google Scholar and PubMed has been performed from 2003 to February 2022 using a combination of keywords. A review of the types of 3D printing is presented. Additionally, different types of hydrogels and nano-biocomposite materials for 3D printing application are critically reviewed. The rheological properties and crosslinking mechanisms for the hydrogels are assessed.

RESULTS

Extrusion-based 3D printing is the most common practice for constructing hydrogel-based scaffolds, and it allows for the use of varying types of polymers to enhance the properties and printability of the hydrogel-based scaffolds. Rheology has been found to be exceedingly important in the 3D printing process; however, shear-thinning and thixotropic characteristics should also be present in the hydrogel. Despite these features of extrusion-based 3D printing, there are limitations to its printing resolution and scale.

CONCLUSION

Combining natural and synthetic polymers and a variety of nanomaterials, such as metal, metal oxide, non-metal, and polymeric, can enhance the properties of hydrogel and provide additional functionality to their 3D-printed constructs.

摘要

目的

被称为水凝胶的关键天然聚合物是组织工程构建体设计中的一类重要材料,可为细胞附着和增殖提供适宜的环境。然而,与体内组织相比,这些水凝胶的力学性能较差。这些性能给水凝胶支架的3D打印及其制造后的手术操作带来了挑战。因此,本研究的目的是批判性地综述水凝胶的3D打印工艺及其在组织工程应用中的特性。

方法

使用关键词组合在2003年至2022年2月期间对谷歌学术和PubMed进行了搜索。介绍了3D打印的类型。此外,对用于3D打印应用的不同类型的水凝胶和纳米生物复合材料进行了批判性综述。评估了水凝胶的流变学特性和交联机制。

结果

基于挤出的3D打印是构建水凝胶基支架最常用的方法,它允许使用不同类型的聚合物来增强水凝胶基支架的性能和可打印性。流变学在3D打印过程中被发现极其重要;然而,水凝胶还应具有剪切变稀和触变特性。尽管基于挤出的3D打印有这些特点,但其打印分辨率和规模仍存在局限性。

结论

将天然和合成聚合物与各种纳米材料(如金属、金属氧化物、非金属和聚合物)相结合,可以增强水凝胶的性能,并为其3D打印构建体提供额外的功能。

相似文献

1
3D Printing of Hybrid-Hydrogel Materials for Tissue Engineering: a Critical Review.
Regen Eng Transl Med. 2023 Mar;9(1):29-41. doi: 10.1007/s40883-022-00267-w. Epub 2022 Aug 1.
3
Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
ACS Appl Mater Interfaces. 2020 Jan 29;12(4):4343-4357. doi: 10.1021/acsami.9b22062. Epub 2020 Jan 17.
4
Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting.
J Mech Behav Biomed Mater. 2019 Oct;98:187-194. doi: 10.1016/j.jmbbm.2019.06.014. Epub 2019 Jun 22.
5
Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness.
Carbohydr Polym. 2022 Sep 1;291:119616. doi: 10.1016/j.carbpol.2022.119616. Epub 2022 May 14.
6
Advancing bioinks for 3D bioprinting using reactive fillers: A review.
Acta Biomater. 2020 Sep 1;113:1-22. doi: 10.1016/j.actbio.2020.06.040. Epub 2020 Jul 2.
7
Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents.
Biomed Mater. 2022 Jul 22;17(5). doi: 10.1088/1748-605X/ac7f15.
8
3D Printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel.
Colloids Surf B Biointerfaces. 2021 Dec;208:112108. doi: 10.1016/j.colsurfb.2021.112108. Epub 2021 Sep 12.
9
3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review.
Acta Biomater. 2020 Jan 1;101:1-13. doi: 10.1016/j.actbio.2019.08.044. Epub 2019 Aug 30.
10
Recent Advances in 3D Printing of Photocurable Polymers: Types, Mechanism, and Tissue Engineering Application.
Macromol Biosci. 2023 Jan;23(1):e2200278. doi: 10.1002/mabi.202200278. Epub 2022 Oct 17.

引用本文的文献

1
Optimizing GBM organoid construction with hydrogel-based models: GelMA-HAMA scaffold supports GBM organoids with clonal growth for drug screening.
Cell Transplant. 2025 Jan-Dec;34:9636897251347537. doi: 10.1177/09636897251347537. Epub 2025 Jun 24.
4
Engineering extracellular matrix-based hydrogels for intervertebral disc regeneration.
Front Bioeng Biotechnol. 2025 May 1;13:1601154. doi: 10.3389/fbioe.2025.1601154. eCollection 2025.
5
Enhancing auricular reconstruction: A biomimetic scaffold with 3D-printed multiscale porous structure utilizing chondrogenic activity ink.
Mater Today Bio. 2025 Jan 24;31:101516. doi: 10.1016/j.mtbio.2025.101516. eCollection 2025 Apr.
7
Polyethersulfone Polymer for Biomedical Applications and Biotechnology.
Int J Mol Sci. 2024 Apr 11;25(8):4233. doi: 10.3390/ijms25084233.
8
3D-Printed Hydrogel for Diverse Applications: A Review.
Gels. 2023 Dec 7;9(12):960. doi: 10.3390/gels9120960.

本文引用的文献

1
3D printable SiO nanoparticle ink for patient specific bone regeneration.
RSC Adv. 2019 Jul 31;9(41):23832-23842. doi: 10.1039/c9ra03641e. eCollection 2019 Jul 29.
2
3D Printing Hydrogel-Based Soft and Biohybrid Actuators: A Mini-Review on Fabrication Techniques, Applications, and Challenges.
Front Robot AI. 2021 Apr 29;8:673533. doi: 10.3389/frobt.2021.673533. eCollection 2021.
3
3D Printing of a Double Network Hydrogel with a Compression Strength and Elastic Modulus Greater than those of Cartilage.
ACS Biomater Sci Eng. 2017 May 8;3(5):863-869. doi: 10.1021/acsbiomaterials.7b00094. Epub 2017 Apr 14.
4
3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering.
Int J Bioprint. 2018 Jan 19;4(1):126. doi: 10.18063/IJB.v4i1.126. eCollection 2018.
5
Extrusion printing of ionic-covalent entanglement hydrogels with high toughness.
J Mater Chem B. 2013 Oct 14;1(38):4939-4946. doi: 10.1039/c3tb21159b. Epub 2013 Aug 23.
6
Keratin Associations with Synthetic, Biosynthetic and Natural Polymers: An Extensive Review.
Polymers (Basel). 2019 Dec 23;12(1):32. doi: 10.3390/polym12010032.
7
Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs.
Adv Funct Mater. 2017 Mar 24;27(12). doi: 10.1002/adfm.201605352. Epub 2017 Jan 17.
8
Additive Manufacturing as a Method to Design and Optimize Bioinspired Structures.
Adv Mater. 2018 Dec;30(52):e1800940. doi: 10.1002/adma.201800940. Epub 2018 Aug 22.
10
Functional Polymers and Nanocomposites for 3D Printing of Smart Structures and Devices.
ACS Appl Mater Interfaces. 2018 May 30;10(21):17489-17507. doi: 10.1021/acsami.8b01786. Epub 2018 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验