Suppr超能文献

用于室温固态电池的复合固体电解质在三维陶瓷框架上的原位聚合

In Situ Polymerization on a 3D Ceramic Framework of Composite Solid Electrolytes for Room-Temperature Solid-State Batteries.

作者信息

Nguyen An-Giang, Verma Rakesh, Song Geon-Chang, Kim Jaekook, Park Chan-Jin

机构信息

School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.

Department of Chemistry, University of Allahabad, Prayagraj, 211002, India.

出版信息

Adv Sci (Weinh). 2023 Jul;10(21):e2207744. doi: 10.1002/advs.202207744. Epub 2023 May 18.

Abstract

Solid-state batteries (SSBs) are ideal candidates for next-generation high-energy-density batteries in the Battery of Things era. Unfortunately, SSB application is limited by their poor ionic conductivity and electrode-electrolyte interfacial compatibility. Herein, in situ composite solid electrolytes (CSEs) are fabricated by infusing vinyl ethylene carbonate monomer into a 3D ceramic framework to address these challenges. The unique and integrated structure of CSEs generates inorganic, polymer, and continuous inorganic-polymer interphase pathways that accelerate ion transportation, as revealed by solid-state nuclear magnetic resonance (SSNMR) analysis. In addition, the mechanism and activation energy of Li transportation are studied and visualized by performing density functional theory calculations. Furthermore, the monomer solution can penetrate and polymerize in situ to form an excellent ionic conductor network inside the cathode structure. This concept is successfully applied to both solid-state lithium and sodium batteries. The Li|CSE|LiNi Co Mn O cell fabricated herein delivers a specific discharge capacity of 118.8 mAh g after 230 cycles at 0.5 C and 30 °C. Meanwhile, the Na|CSE|Na Mg V (PO ) @C cell fabricated herein maintains its cycling stability over 3000 cycles at 2 C and 30 °C with zero-fading. The proposed integrated strategy provides a new perspective for designing fast ionic conductor electrolytes to boost high-energy solid-state batteries.

摘要

固态电池(SSB)是物联网时代下一代高能量密度电池的理想选择。不幸的是,SSB的应用受到其离子电导率差和电极-电解质界面兼容性的限制。在此,通过将碳酸亚乙烯酯单体注入三维陶瓷骨架中来制备原位复合固体电解质(CSE),以应对这些挑战。固态核磁共振(SSNMR)分析表明,CSE独特的集成结构产生了无机、聚合物和连续的无机-聚合物相间通道,加速了离子传输。此外,通过进行密度泛函理论计算,研究并可视化了锂传输的机制和活化能。此外,单体溶液可以原位渗透并聚合,在阴极结构内部形成优异的离子导体网络。这一概念已成功应用于固态锂和钠电池。本文制备的Li|CSE|LiNiCoMnO电池在0.5C和30°C下循环230次后,比放电容量为118.8 mAh g。同时,本文制备的Na|CSE|NaMgV(PO)@C电池在2C和30°C下循环3000次以上,保持零衰减的循环稳定性。所提出的集成策略为设计快速离子导体电解质以推动高能量固态电池提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cc0/10375120/7673719b6634/ADVS-10-2207744-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验