Suppr超能文献

深度学习辅助内镜超声对胰腺肿瘤的诊断价值:一项系统评价和荟萃分析

Diagnostic value of deep learning-assisted endoscopic ultrasound for pancreatic tumors: a systematic review and meta-analysis.

作者信息

Lv Bing, Wang Kunhong, Wei Ning, Yu Feng, Tao Tao, Shi Yanting

机构信息

School of Computer Science and Technology, Shandong University of Technology, Zibo, Shandong, China.

Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong, China.

出版信息

Front Oncol. 2023 Jul 27;13:1191008. doi: 10.3389/fonc.2023.1191008. eCollection 2023.

Abstract

BACKGROUND AND AIMS

Endoscopic ultrasonography (EUS) is commonly utilized in the diagnosis of pancreatic tumors, although as this modality relies primarily on the practitioner's visual judgment, it is prone to result in a missed diagnosis or misdiagnosis due to inexperience, fatigue, or distraction. Deep learning (DL) techniques, which can be used to automatically extract detailed imaging features from images, have been increasingly beneficial in the field of medical image-based assisted diagnosis. The present systematic review included a meta-analysis aimed at evaluating the accuracy of DL-assisted EUS for the diagnosis of pancreatic tumors diagnosis.

METHODS

We performed a comprehensive search for all studies relevant to EUS and DL in the following four databases, from their inception through February 2023: PubMed, Embase, Web of Science, and the Cochrane Library. Target studies were strictly screened based on specific inclusion and exclusion criteria, after which we performed a meta-analysis using Stata 16.0 to assess the diagnostic ability of DL and compare it with that of EUS practitioners. Any sources of heterogeneity were explored using subgroup and meta-regression analyses.

RESULTS

A total of 10 studies, involving 3,529 patients and 34,773 training images, were included in the present meta-analysis. The pooled sensitivity was 93% (95% confidence interval [CI], 87-96%), the pooled specificity was 95% (95% CI, 89-98%), and the area under the summary receiver operating characteristic curve (AUC) was 0.98 (95% CI, 0.96-0.99).

CONCLUSION

DL-assisted EUS has a high accuracy and clinical applicability for diagnosing pancreatic tumors.

SYSTEMATIC REVIEW REGISTRATION

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023391853, identifier CRD42023391853.

摘要

背景与目的

内镜超声检查(EUS)常用于胰腺肿瘤的诊断,然而由于这种检查方式主要依赖从业者的视觉判断,因经验不足、疲劳或注意力分散,容易导致漏诊或误诊。深度学习(DL)技术可用于从图像中自动提取详细的成像特征,在基于医学图像的辅助诊断领域中越来越有益。本系统评价纳入一项荟萃分析,旨在评估深度学习辅助EUS对胰腺肿瘤诊断的准确性。

方法

我们在以下四个数据库中对从创建至2023年2月所有与EUS和DL相关的研究进行了全面检索:PubMed、Embase、科学网和考克兰图书馆。根据特定的纳入和排除标准对目标研究进行严格筛选,之后我们使用Stata 16.0进行荟萃分析,以评估DL的诊断能力,并将其与EUS从业者的诊断能力进行比较。使用亚组分析和荟萃回归分析探究任何异质性来源。

结果

本荟萃分析共纳入10项研究,涉及3529例患者和34773张训练图像。合并敏感度为93%(95%置信区间[CI],87-96%),合并特异度为95%(95%CI,89-98%),汇总受试者工作特征曲线(AUC)下面积为0.98(95%CI,0.96-0.99)。

结论

深度学习辅助EUS对胰腺肿瘤的诊断具有较高的准确性和临床适用性。

系统评价注册

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023391853,标识符CRD42023391853

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e702/10414790/1a9dedf9d8f5/fonc-13-1191008-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验