Suppr超能文献

通过整合多种组学和临床协变量预测鱼类的饲料效率和基于性能的性状

Prediction of Feed Efficiency and Performance-Based Traits in Fish via Integration of Multiple Omics and Clinical Covariates.

作者信息

Young Tim, Laroche Olivier, Walker Seumas P, Miller Matthew R, Casanovas Paula, Steiner Konstanze, Esmaeili Noah, Zhao Ruixiang, Bowman John P, Wilson Richard, Bridle Andrew, Carter Chris G, Nowak Barbara F, Alfaro Andrea C, Symonds Jane E

机构信息

Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Private Bag 92006, Auckland 1142, New Zealand.

The Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.

出版信息

Biology (Basel). 2023 Aug 15;12(8):1135. doi: 10.3390/biology12081135.

Abstract

Fish aquaculture is a rapidly expanding global industry, set to support growing demands for sources of marine protein. Enhancing feed efficiency (FE) in farmed fish is required to reduce production costs and improve sector sustainability. Recognising that organisms are complex systems whose emerging phenotypes are the product of multiple interacting molecular processes, systems-based approaches are expected to deliver new biological insights into FE and growth performance. Here, we establish 14 diverse layers of multi-omics and clinical covariates to assess their capacities to predict FE and associated performance traits in a fish model () and uncover the influential variables. Inter-omic relatedness between the different layers revealed several significant concordances, particularly between datasets originating from similar material/tissue and between blood indicators and some of the proteomic (liver), metabolomic (liver), and microbiomic layers. Single- and multi-layer random forest (RF) regression models showed that integration of all data layers provide greater FE prediction power than any single-layer model alone. Although FE was among the most challenging of the traits we attempted to predict, the mean accuracy of 40 different FE models in terms of root-mean square errors normalized to percentage was 30.4%, supporting RF as a feature selection tool and approach for complex trait prediction. Major contributions to the integrated FE models were derived from layers of proteomic and metabolomic data, with substantial influence also provided by the lipid composition layer. A correlation matrix of the top 27 variables in the models highlighted FE trait-associations with faecal bacteria ( spp.), palmitic and nervonic acid moieties in whole body lipids, levels of free glycerol in muscle, and N-acetylglutamic acid content in liver. In summary, we identified subsets of molecular characteristics for the assessment of commercially relevant performance-based metrics in farmed Chinook salmon.

摘要

鱼类养殖是一个在全球迅速扩张的产业,旨在满足对海洋蛋白质来源不断增长的需求。提高养殖鱼类的饲料效率(FE)对于降低生产成本和提高该行业的可持续性至关重要。认识到生物体是复杂的系统,其新出现的表型是多个相互作用的分子过程的产物,基于系统的方法有望为饲料效率和生长性能提供新的生物学见解。在此,我们建立了14个不同层次的多组学和临床协变量,以评估它们预测鱼类模型中饲料效率及相关性能特征的能力,并找出有影响的变量。不同层次之间的组学相关性揭示了几个显著的一致性,特别是来自相似材料/组织的数据集之间,以及血液指标与一些蛋白质组学(肝脏)、代谢组学(肝脏)和微生物组学层次之间。单层和多层随机森林(RF)回归模型表明,与任何单一层次模型相比,整合所有数据层能提供更强的饲料效率预测能力。尽管饲料效率是我们试图预测的最具挑战性的性状之一,但40个不同饲料效率模型在均方根误差归一化为百分比方面的平均准确率为30.4%,这支持了随机森林作为一种特征选择工具和复杂性状预测方法。对综合饲料效率模型的主要贡献来自蛋白质组学和代谢组学数据层,脂质组成层也有重大影响。模型中前27个变量的相关矩阵突出了饲料效率性状与粪便细菌( spp.)、全身脂质中的棕榈酸和神经酸部分、肌肉中游离甘油水平以及肝脏中N-乙酰谷氨酸含量之间的关联。总之,我们确定了用于评估养殖奇努克鲑鱼商业相关性能指标的分子特征子集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d0e/10452023/fa32b8001aca/biology-12-01135-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验