Suppr超能文献

深度学习用于腹部超声图像中肝脏局灶性病变的检测、定位及特征描述

Deep Learning for the Detection, Localization, and Characterization of Focal Liver Lesions on Abdominal US Images.

作者信息

Dadoun Hind, Rousseau Anne-Laure, de Kerviler Eric, Correas Jean-Michel, Tissier Anne-Marie, Joujou Fanny, Bodard Sylvain, Khezzane Kemel, de Margerie-Mellon Constance, Delingette Hervé, Ayache Nicholas

机构信息

Université Côte d'Azur, Inria, Epione Team, Sophia Antipolis, 2004 Route des Lucioles, 06902 Valbonne, France (H. Dadoun, H. Delingette, N.A.); Department of Vascular Surgery, Georges Pompidou European Hospital APHP, Université de Paris, Paris, France (A.L.R.); NHance.ngo, Saint Germain en Laye, France (A.L.R.); Department of Radiology, Hôpital Saint Louis APHP, Université de Paris, Paris, France (E.d.K., F.J., K.K., C.d.M.M.); and Department of Adult Radiology, Université de Paris and Université de l'Hôpital Necker, Paris, France (J.M.C., A.M.T., S.B.).

出版信息

Radiol Artif Intell. 2022 Mar 2;4(3):e210110. doi: 10.1148/ryai.210110. eCollection 2022 May.

Abstract

PURPOSE

To train and assess the performance of a deep learning-based network designed to detect, localize, and characterize focal liver lesions (FLLs) in the liver parenchyma on abdominal US images.

MATERIALS AND METHODS

In this retrospective, multicenter, institutional review board-approved study, two object detectors, Faster region-based convolutional neural network (Faster R-CNN) and Detection Transformer (DETR), were fine-tuned on a dataset of 1026 patients ( = 2551 B-mode abdominal US images obtained between 2014 and 2018). Performance of the networks was analyzed on a test set of 48 additional patients ( = 155 B-mode abdominal US images obtained in 2019) and compared with the performance of three caregivers (one nonexpert and two experts) blinded to the clinical history. The sign test was used to compare accuracy, specificity, sensitivity, and positive predictive value among all raters.

RESULTS

DETR achieved a specificity of 90% (95% CI: 75, 100) and a sensitivity of 97% (95% CI: 97, 97) for the detection of FLLs. The performance of DETR met or exceeded that of the three caregivers for this task. DETR correctly localized 80% of the lesions, and it achieved a specificity of 81% (95% CI: 67, 91) and a sensitivity of 82% (95% CI: 62, 100) for FLL characterization (benign vs malignant) among lesions localized by all raters. The performance of DETR met or exceeded that of two experts and Faster R-CNN for these tasks.

CONCLUSION

DETR demonstrated high specificity for detection, localization, and characterization of FLLs on abdominal US images.  RSNA, 2022 Computer-aided Diagnosis (CAD), Ultrasound, Abdomen/GI, Liver, Tissue Characterization, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN).

摘要

目的

训练并评估一个基于深度学习的网络的性能,该网络旨在检测、定位和表征腹部超声图像中肝实质内的局灶性肝病变(FLL)。

材料与方法

在这项经机构审查委员会批准的回顾性多中心研究中,对两个目标检测器,即基于区域的快速卷积神经网络(Faster R-CNN)和检测变换器(DETR),在一个包含1026例患者的数据集(2014年至2018年期间获取的2551幅B型腹部超声图像)上进行了微调。在另外48例患者的测试集(2019年获取的155幅B型腹部超声图像)上分析了网络的性能,并与三位对临床病史不知情的医护人员(一位非专家和两位专家)的性能进行了比较。采用符号检验比较所有评估者之间的准确性、特异性、敏感性和阳性预测值。

结果

DETR检测FLL的特异性为90%(95%CI:75,100),敏感性为97%(95%CI:97,97)。对于这项任务,DETR的性能达到或超过了三位医护人员的性能。DETR正确定位了80%的病变,在所有评估者定位的病变中,其对FLL特征(良性与恶性)的特异性为81%(95%CI:67,91),敏感性为82%(95%CI:62,100)。对于这些任务,DETR的性能达到或超过了两位专家和Faster R-CNN的性能。

结论

DETR在腹部超声图像上对FLL的检测、定位和特征表征显示出高特异性。RSNA,2022计算机辅助诊断(CAD)、超声、腹部/胃肠道、肝脏、组织表征、监督学习、迁移学习、卷积神经网络(CNN)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcd9/9152842/4de57c21e144/ryai.210110.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验