Suppr超能文献

基于人工智能的无标记运动捕捉系统用于临床步态分析的有效性:健康成年人和帕金森病成年人的时空结果。

Validity of artificial intelligence-based markerless motion capture system for clinical gait analysis: Spatiotemporal results in healthy adults and adults with Parkinson's disease.

机构信息

Department of Kinesiology and Sport Sciences, University of Miami, Miami, FL, United States; Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL, United States.

Department of Kinesiology and Sport Sciences, University of Miami, Miami, FL, United States; Center on Aging, University of Miami Miller School of Medicine, Miami, FL, United States.

出版信息

J Biomech. 2023 Jun;155:111645. doi: 10.1016/j.jbiomech.2023.111645. Epub 2023 May 19.

Abstract

Markerless motion capture methods are continuously in development to target limitations encountered in marker-, sensor-, or depth-based systems. Previous evaluation of the KinaTrax markerless system was limited by differences in model definitions, gait event methods, and a homogenous subject sample. The purpose of this work was to evaluate the accuracy of spatiotemporal parameters in the markerless system with an updated markerless model, coordinate- and velocity-based gait events, and subjects representing young adult, older adult, and Parkinson's disease groups. Fifty-seven subjects and 216 trials were included in this analysis. Interclass correlation coefficients showed excellent agreement between the markerless system and a marker-based reference system for all spatial parameters. Temporal variables were similar, except swing time which showed good agreement. Concordance correlation coefficients were similar with all but swing time showing moderate to almost perfect concordance. Bland-Altman bias and limits of agreement (LOA) were small and improved from previous evaluations. Parameters showed similar agreement across coordinate- and velocity-based gait methods with the latter showing generally smaller LOAs. Improvements in spatiotemporal parameters in the present evaluation was due to inclusion of keypoints at the calcanei in the markerless model. Consistency in the calcanei keypoints relative to heel marker placements may improve results further. Similar to previous work, LOAs are within boundaries to detect differences in clinical groups. Results support the use of the markerless system for estimation of spatiotemporal parameters across age and clinical groups, but caution should be taken when generalizing findings due to remaining error in kinematic gait event methods.

摘要

无标记运动捕捉方法不断发展,旨在针对标记、传感器或基于深度的系统中遇到的限制。以前对 KinaTrax 无标记系统的评估受到模型定义、步态事件方法和同质受试者样本的差异的限制。本工作的目的是使用更新的无标记模型、基于坐标和速度的步态事件以及代表年轻成年人、老年人和帕金森病组的受试者来评估无标记系统时空参数的准确性。本分析共纳入 57 名受试者和 216 次试验。组内相关系数显示,无标记系统与基于标记的参考系统在所有空间参数上具有极好的一致性。时间变量相似,除了摆动时间显示出良好的一致性外。除了摆动时间显示出中等至几乎完美的一致性外,一致性相关系数与其他所有参数都相似。Bland-Altman 偏差和界限协议(LOA)较小,并从以前的评估中得到了改善。参数在基于坐标和速度的步态方法之间具有相似的一致性,后者通常具有较小的 LOA。在本评估中,时空参数的改进是由于在无标记模型中包含了跟骨关键点。相对于脚跟标记放置,跟骨关键点的一致性可能会进一步提高结果。与以前的工作类似,LOA 在检测临床组差异的范围内。结果支持使用无标记系统来估计年龄和临床组的时空参数,但由于运动事件方法仍然存在误差,因此在推广发现时应谨慎。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验