Institute of Cognitive Science and Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States.
Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States.
Pain. 2023 Oct 1;164(10):2239-2252. doi: 10.1097/j.pain.0000000000002922. Epub 2023 May 23.
Chronic pain conditions frequently co-occur, suggesting common risks and paths to prevention and treatment. Previous studies have reported genetic correlations among specific groups of pain conditions and reported genetic risk for within-individual multisite pain counts (≤7). Here, we identified genetic risk for multiple distinct pain disorders across individuals using 24 chronic pain conditions and genomic structural equation modeling (Genomic SEM). First, we ran individual genome-wide association studies (GWASs) on all 24 conditions in the UK Biobank ( N ≤ 436,000) and estimated their pairwise genetic correlations. Then we used these correlations to model their genetic factor structure in Genomic SEM, using both hypothesis- and data-driven exploratory approaches. A complementary network analysis enabled us to visualize these genetic relationships in an unstructured manner. Genomic SEM analysis revealed a general factor explaining most of the shared genetic variance across all pain conditions and a second, more specific factor explaining genetic covariance across musculoskeletal pain conditions. Network analysis revealed a large cluster of conditions and identified arthropathic, back, and neck pain as potential hubs for cross-condition chronic pain. Additionally, we ran GWASs on both factors extracted in Genomic SEM and annotated them functionally. Annotation identified pathways associated with organogenesis, metabolism, transcription, and DNA repair, with overrepresentation of strongly associated genes exclusively in brain tissues. Cross-reference with previous GWASs showed genetic overlap with cognition, mood, and brain structure. These results identify common genetic risks and suggest neurobiological and psychosocial mechanisms that should be targeted to prevent and treat cross-condition chronic pain.
慢性疼痛病症常同时发生,提示存在共同的风险因素和预防及治疗途径。先前的研究报告了特定类别的疼痛病症之间存在遗传相关性,并报告了个体多部位疼痛计数(≤7)的遗传风险。在这里,我们使用 24 种慢性疼痛病症和基因组结构方程模型(Genomic SEM),在个体间确定了多种不同疼痛障碍的遗传风险。首先,我们对英国生物库中的所有 24 种病症(N≤436,000)进行了个体全基因组关联研究(GWAS),并估计了它们之间的遗传相关性。然后,我们使用这些相关性,通过假设驱动和数据驱动的探索性方法,在 Genomic SEM 中对它们的遗传因素结构进行建模。补充的网络分析使我们能够以非结构化的方式可视化这些遗传关系。Genomic SEM 分析揭示了一个解释大多数疼痛病症之间共享遗传方差的一般因素,以及另一个解释肌肉骨骼疼痛病症之间遗传协方差的更具体因素。网络分析揭示了一个大型病症集群,并确定了关节病、背部和颈部疼痛是跨病症慢性疼痛的潜在枢纽。此外,我们还对 Genomic SEM 中提取的两个因素进行了 GWAS,并对其进行了功能注释。注释确定了与器官发生、代谢、转录和 DNA 修复相关的途径,强烈相关基因的过度表达仅存在于脑组织中。与先前的 GWAS 交叉参考显示,与认知、情绪和大脑结构存在遗传重叠。这些结果确定了共同的遗传风险,并提出了应针对预防和治疗跨病症慢性疼痛的神经生物学和心理社会机制。