Ghorbani Amirata, Ouyang David, Abid Abubakar, He Bryan, Chen Jonathan H, Harrington Robert A, Liang David H, Ashley Euan A, Zou James Y
1Department of Electrical Engineering, Stanford University, Stanford, CA USA.
2Department of Medicine, Stanford University, Stanford, CA USA.
NPJ Digit Med. 2020 Jan 24;3:10. doi: 10.1038/s41746-019-0216-8. eCollection 2020.
Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( = 0.74 and = 0.70), and ejection fraction ( = 0.50), as well as predicted systemic phenotypes of age ( = 0.46), sex (AUC = 0.88), weight ( = 0.56), and height ( = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation.
超声心动图利用超声技术获取心脏及周围结构的高时间和空间分辨率图像,是心血管医学中最常用的成像方式。通过在一个大型新数据集上使用卷积神经网络,我们表明应用于超声心动图的深度学习可以识别局部心脏结构、估计心脏功能,并预测可改变心血管风险但人类难以直接解读的全身表型。我们的深度学习模型EchoNet能够准确识别起搏器导线的存在(曲线下面积[AUC]=0.89)、左心房扩大(AUC=0.86)、左心室肥厚(AUC=0.75)、左心室收缩末期和舒张末期容积(分别为0.74和0.70)以及射血分数(0.50),还能预测年龄(0.46)、性别(AUC=0.88)、体重(0.56)和身高(0.33)等全身表型。解释分析证实,EchoNet在执行可由人类解释任务时对关键心脏结构给予了适当关注,在预测人类难以解读的全身表型时突出了产生假设的感兴趣区域。对超声心动图图像进行机器学习可以简化临床工作流程中的重复性任务,在合格心脏病专家不足的领域提供初步解读,并预测对人类评估具有挑战性的表型。