Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Einsteinufer 37, 10587, Berlin, Germany.
Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
Sci Rep. 2023 May 23;13(1):8336. doi: 10.1038/s41598-023-35370-7.
Machine learning is transforming the field of histopathology. Especially in classification related tasks, there have been many successful applications of deep learning already. Yet, in tasks that rely on regression and many niche applications, the domain lacks cohesive procedures that are adapted to the learning processes of neural networks. In this work, we investigate cell damage in whole slide images of the epidermis. A common way for pathologists to annotate a score, characterizing the degree of damage for these samples, is the ratio between healthy and unhealthy nuclei. The annotation procedure of these scores, however, is expensive and prone to be noisy among pathologists. We propose a new measure of damage, that is the total area of damage, relative to the total area of the epidermis. In this work, we present results of regression and segmentation models, predicting both scores on a curated and public dataset. We have acquired the dataset in collaborative efforts with medical professionals. Our study resulted in a comprehensive evaluation of the proposed damage metrics in the epidermis, with recommendations, emphasizing practical relevance for real world applications.
机器学习正在改变组织病理学领域。特别是在与分类相关的任务中,深度学习已经有了许多成功的应用。然而,在依赖回归和许多利基应用的任务中,该领域缺乏适应神经网络学习过程的一致流程。在这项工作中,我们研究了表皮全切片图像中的细胞损伤。病理学家对这些样本进行评分的一种常见方法是健康核与不健康核的比例。然而,这些评分的标注过程代价高昂,且在病理学家之间容易出现噪声。我们提出了一种新的损伤度量方法,即相对于表皮总面积的损伤总面积。在这项工作中,我们提出了回归和分割模型的结果,这些模型预测了经过精心处理的公共数据集和公共数据集上的评分。我们已经与医疗专业人员合作获取了数据集。我们的研究对表皮中提出的损伤指标进行了全面评估,并提出了建议,强调了在实际应用中的实际相关性。