Suppr超能文献

基于弥散张量成像的机器学习对 IDH 野生型胶质母细胞瘤进行分层,以揭示放射组学特征的生物学基础。

Diffusion tensor imaging-based machine learning for IDH wild-type glioblastoma stratification to reveal the biological underpinning of radiomic features.

机构信息

Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

CNS Neurosci Ther. 2023 Nov;29(11):3339-3350. doi: 10.1111/cns.14263. Epub 2023 May 24.

Abstract

INTRODUCTION

This study addresses the lack of systematic investigation into the prognostic value of hand-crafted radiomic features derived from diffusion tensor imaging (DTI) in isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM), as well as the limited understanding of the biological interpretation of individual DTI radiomic features and metrics.

AIMS

To develop and validate a DTI-based radiomic model for predicting prognosis in patients with IDH wild-type GBM and reveal the biological underpinning of individual DTI radiomic features and metrics.

RESULTS

The DTI-based radiomic signature was an independent prognostic factor (p < 0.001). Incorporating the radiomic signature into a clinical model resulted in a radiomic-clinical nomogram that predicted survival better than either the radiomic model or clinical model alone, with a better calibration and classification accuracy. Four categories of pathways (synapse, proliferation, DNA damage response, and complex cellular functions) were significantly correlated with the DTI-based radiomic features and DTI metrics.

CONCLUSION

The prognostic radiomic features derived from DTI are driven by distinct pathways involved in synapse, proliferation, DNA damage response, and complex cellular functions of GBM.

摘要

简介

本研究旨在解决扩散张量成像(DTI)衍生的手工绘制放射特征在异柠檬酸脱氢酶(IDH)野生型胶质母细胞瘤(GBM)中预后价值缺乏系统研究的问题,以及对个别 DTI 放射特征和指标的生物学解释的理解有限的问题。

目的

建立和验证基于 DTI 的放射组学模型,以预测 IDH 野生型 GBM 患者的预后,并揭示个体 DTI 放射组学特征和指标的生物学基础。

结果

基于 DTI 的放射组学特征是独立的预后因素(p<0.001)。将放射组学特征纳入临床模型可得到放射组学-临床列线图,其预测生存能力优于放射组学模型或临床模型单独预测,具有更好的校准和分类准确性。四类途径(突触、增殖、DNA 损伤反应和复杂细胞功能)与基于 DTI 的放射组学特征和 DTI 指标显著相关。

结论

源自 DTI 的预后放射组学特征是由涉及 GBM 的突触、增殖、DNA 损伤反应和复杂细胞功能的不同途径驱动的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8773/10580329/de55f30cf387/CNS-29-3339-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验