文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

慢性肾脏病中的能量代谢失调。

Energy Metabolism Dysregulation in Chronic Kidney Disease.

机构信息

Division of Nephrology and Hypertension, University of California San Diego, San Diego, California.

VA San Diego Healthcare System, San Diego, California.

出版信息

Kidney360. 2023 Aug 1;4(8):1080-1094. doi: 10.34067/KID.0000000000000153. Epub 2023 May 24.


DOI:10.34067/KID.0000000000000153
PMID:37222594
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10476685/
Abstract

KEY POINTS: There is significant enrichment in metabolic pathways in early stages in the subtotal nephrectomy model of CKD. Proximal tubular mitochondrial respiration is suppressed likely from mitochondrial dysfunction in substrate utilization and ATP synthesis. There is significant suppression of pyruvate dehydrogenase and increased glycolysis in proximal tubules. BACKGROUND: CKD is a significant contributor to morbidity and mortality. A better understanding of mechanisms underlying CKD progression is indispensable for developing effective therapies. Toward this goal, we addressed specific gaps in knowledge regarding tubular metabolism in the pathogenesis of CKD using the subtotal nephrectomy (STN) model in mice. METHODS: Weight- and age‐matched male 129X1/SvJ mice underwent sham or STN surgeries. We conducted serial GFR and hemodynamic measurements up to 16 weeks after sham and STN surgery and established the 4-week time point for subsequent studies. RESULTS: For a comprehensive assessment of renal metabolism, we conducted transcriptomic analyses, which showed significant enrichment of pathways involved in fatty acid metabolism, gluconeogenesis, glycolysis, and mitochondrial metabolism in STN kidneys. Expression of rate-limiting fatty acid oxidation and glycolytic enzymes was increased in STN kidneys, and proximal tubules in STN kidneys exhibited increased functional glycolysis but decreased mitochondrial respiration, despite an increase in mitochondrial biogenesis. Assessment of the pyruvate dehydrogenase complex pathway showed significant suppression of pyruvate dehydrogenase, suggesting decreased provision of acetyl CoA from pyruvate for the citric acid cycle to fuel mitochondrial respiration. CONCLUSION: Metabolic pathways are significantly altered in response to kidney injury and may play an important role in the disease progression.

摘要

要点:在 CKD 的次全肾切除模型的早期阶段,代谢途径有明显的富集。近端肾小管线粒体呼吸受到抑制,可能是由于底物利用和 ATP 合成中的线粒体功能障碍。近端肾小管中丙酮酸脱氢酶显著抑制,糖酵解增加。

背景:CKD 是发病率和死亡率的重要原因。为了开发有效的治疗方法,了解 CKD 进展的机制至关重要。为此,我们使用小鼠的次全肾切除术(STN)模型,针对肾小管代谢在 CKD 发病机制中的具体知识空白进行了研究。

方法:体重和年龄匹配的 129X1/SvJ 雄性小鼠接受假手术或 STN 手术。我们进行了连续的 GFR 和血液动力学测量,直到假手术和 STN 手术后 16 周,并建立了随后研究的 4 周时间点。

结果:为了全面评估肾脏代谢,我们进行了转录组分析,结果显示 STN 肾脏中涉及脂肪酸代谢、糖异生、糖酵解和线粒体代谢的途径明显富集。STN 肾脏中限速脂肪酸氧化和糖酵解酶的表达增加,尽管线粒体生物发生增加,但 STN 肾脏的近端肾小管表现出增加的功能性糖酵解,但线粒体呼吸减少。丙酮酸脱氢酶复合物途径的评估表明,丙酮酸脱氢酶显著抑制,表明从丙酮酸提供的乙酰辅酶 A 减少,用于柠檬酸循环为线粒体呼吸提供燃料。

结论:代谢途径对肾脏损伤有明显的改变,可能在疾病进展中发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/a8b6552cc65f/kidney360-4-1080-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/fd773627b93a/kidney360-4-1080-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/97bec68c1ba3/kidney360-4-1080-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/9ba9f836c296/kidney360-4-1080-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/8a9ab5308b2d/kidney360-4-1080-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/b80db457ba7f/kidney360-4-1080-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/c4a2ceb3d6cd/kidney360-4-1080-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/2cbc96213e74/kidney360-4-1080-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/a8b6552cc65f/kidney360-4-1080-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/fd773627b93a/kidney360-4-1080-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/97bec68c1ba3/kidney360-4-1080-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/9ba9f836c296/kidney360-4-1080-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/8a9ab5308b2d/kidney360-4-1080-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/b80db457ba7f/kidney360-4-1080-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/c4a2ceb3d6cd/kidney360-4-1080-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/2cbc96213e74/kidney360-4-1080-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/10476685/a8b6552cc65f/kidney360-4-1080-g008.jpg

相似文献

[1]
Energy Metabolism Dysregulation in Chronic Kidney Disease.

Kidney360. 2023-8-1

[2]
Reprogramming of Energy Metabolism in Kidney Disease.

Nephron. 2023

[3]
Failure to sense energy depletion may be a novel therapeutic target in chronic kidney disease.

Kidney Int. 2018-11-16

[4]
Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease.

Proc Natl Acad Sci U S A. 2018-5-7

[5]
Obesity causes renal mitochondrial dysfunction and energy imbalance and accelerates chronic kidney disease in mice.

Am J Physiol Renal Physiol. 2019-8-14

[6]
Mitochondrial dysfunction and the AKI-to-CKD transition.

Am J Physiol Renal Physiol. 2020-10-19

[7]
Erythrocyte Metabolic Reprogramming by Sphingosine 1-Phosphate in Chronic Kidney Disease and Therapies.

Circ Res. 2020-7-17

[8]
Nuclear Respiratory Factor-1 (NRF-1) Gene Expression in Chronic Kidney Disease Patients Undergoing Hemodialysis and Mitochondrial Oxidative Dysregulation.

Clin Lab. 2016-11-1

[9]
Role of abnormal energy metabolism in the progression of chronic kidney disease and drug intervention.

Ren Fail. 2022-12

[10]
A systematic review of metabolomic findings in adult and pediatric renal disease.

Clin Biochem. 2024-1

引用本文的文献

[1]
Potential Causal Relationship Between Plasma and Cerebrospinal Fluid Metabolites and Meningioma: Two-Sample Mendelian Randomization Study.

J Multidiscip Healthc. 2025-7-31

[2]
Glycolytic control proteins in urinary extracellular vesicles are elevated during kidney transplant T cell-mediated rejection.

BMC Nephrol. 2025-6-6

[3]
Cathepsin B-dependent glycolysis contributes to reduced renal uric acid excretion in hyperuricemia.

Commun Biol. 2025-6-2

[4]
Spatially Resolved Metabolomics and Network Pharmacology Reveal Extract D Nephrotoxicity Mechanisms in Thunb.

Toxics. 2025-2-28

[5]
Glycerol-3-phosphate contributes to the increase in FGF23 production in chronic kidney disease.

Am J Physiol Renal Physiol. 2025-2-1

[6]
NMFGOT: a multi-view learning framework for the microbiome and metabolome integrative analysis with optimal transport plan.

NPJ Biofilms Microbiomes. 2024-11-24

[7]
Mitochondrial pyruvate carrier 2 mitigates acute kidney injury via sustaining mitochondrial metabolism.

Int J Biol Sci. 2024

[8]
Clinical Factors and Biomarkers Associated with Depressive Disorders in Older Patients Affected by Chronic Kidney Disease (CKD): Does the Advanced Glycation End Products (AGEs)/RAGE (Receptor for AGEs) System Play Any Role?

Geriatrics (Basel). 2024-7-30

[9]
Kidney Aging and Chronic Kidney Disease.

Int J Mol Sci. 2024-6-14

[10]
GCGR: novel potential therapeutic target for chronic kidney disease.

Sci China Life Sci. 2024-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索