文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

NMFGOT:一种基于最优传输规划的微生物组和代谢组综合分析的多视图学习框架。

NMFGOT: a multi-view learning framework for the microbiome and metabolome integrative analysis with optimal transport plan.

机构信息

School of Computer Engineering, Hubei University of Arts and Science, Xiangyang, Hubei, China.

Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang, China.

出版信息

NPJ Biofilms Microbiomes. 2024 Nov 24;10(1):135. doi: 10.1038/s41522-024-00612-7.


DOI:10.1038/s41522-024-00612-7
PMID:39582023
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11586431/
Abstract

The rapid development of high-throughput sequencing techniques provides an unprecedented opportunity to generate biological insights into microbiome-related diseases. However, the relationships among microbes, metabolites and human microenvironment are extremely complex, making data analysis challenging. Here, we present NMFGOT, which is a versatile toolkit for the integrative analysis of microbiome and metabolome data from the same samples. NMFGOT is an unsupervised learning framework based on nonnegative matrix factorization with graph regularized optimal transport, where it utilizes the optimal transport plan to measure the probability distance between microbiome samples, which better dealt with the nonlinear high-order interactions among microbial taxa and metabolites. Moreover, it also includes a spatial regularization term to preserve the spatial consistency of samples in the embedding space across different data modalities. We implemented NMFGOT in several multi-omics microbiome datasets from multiple cohorts. The experimental results showed that NMFGOT consistently performed well compared with several recently published multi-omics integrating methods. Moreover, NMFGOT also facilitates downstream biological analysis, including pathway enrichment analysis and disease-specific metabolite-microbe association analysis. Using NMFGOT, we identified the significantly and stable metabolite-microbe associations in GC and ESRD diseases, which improves our understanding for the mechanisms of human complex diseases.

摘要

高通量测序技术的快速发展为研究微生物组相关疾病提供了前所未有的生物学见解。然而,微生物、代谢物和人类微环境之间的关系极其复杂,使得数据分析具有挑战性。在这里,我们提出了 NMFGOT,这是一个用于整合分析来自相同样本的微生物组和代谢组数据的多功能工具包。NMFGOT 是一种基于非负矩阵分解和图正则最优传输的无监督学习框架,它利用最优传输计划来测量微生物组样本之间的概率距离,从而更好地处理微生物类群和代谢物之间的非线性高阶相互作用。此外,它还包括一个空间正则化项,以保持不同数据模态之间样本在嵌入空间中的空间一致性。我们在来自多个队列的多个多组学微生物组数据集上实现了 NMFGOT。实验结果表明,NMFGOT 与最近发表的几种多组学整合方法相比,性能始终表现良好。此外,NMFGOT 还促进了下游的生物学分析,包括通路富集分析和特定疾病的代谢物-微生物关联分析。使用 NMFGOT,我们确定了 GC 和 ESRD 疾病中显著且稳定的代谢物-微生物关联,这提高了我们对人类复杂疾病机制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c1c/11586431/240cd3a31d2d/41522_2024_612_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c1c/11586431/3aaef615f109/41522_2024_612_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c1c/11586431/9b2ae12d6628/41522_2024_612_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c1c/11586431/5e0159ac7006/41522_2024_612_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c1c/11586431/071e52cf7efc/41522_2024_612_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c1c/11586431/240cd3a31d2d/41522_2024_612_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c1c/11586431/3aaef615f109/41522_2024_612_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c1c/11586431/9b2ae12d6628/41522_2024_612_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c1c/11586431/5e0159ac7006/41522_2024_612_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c1c/11586431/071e52cf7efc/41522_2024_612_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c1c/11586431/240cd3a31d2d/41522_2024_612_Fig5_HTML.jpg

相似文献

[1]
NMFGOT: a multi-view learning framework for the microbiome and metabolome integrative analysis with optimal transport plan.

NPJ Biofilms Microbiomes. 2024-11-24

[2]
Machine learning-causal inference based on multi-omics data reveals the association of altered gut bacteria and bile acid metabolism with neonatal jaundice.

Gut Microbes. 2024

[3]
A meta-analysis study of the robustness and universality of gut microbiome-metabolome associations.

Microbiome. 2021-10-12

[4]
Integrative analysis of microbiome and metabolome revealed the effect of microbial inoculant on microbial community diversity and function in rhizospheric soil under tobacco monoculture.

Microbiol Spectr. 2024-8-6

[5]
Gut microbiome and metabolome to discover pathogenic bacteria and probiotics in ankylosing spondylitis.

Front Immunol. 2024

[6]
Associations between the gut microbiome and metabolome in early life.

BMC Microbiol. 2021-8-28

[7]
Correlation and association analyses in microbiome study integrating multiomics in health and disease.

Prog Mol Biol Transl Sci. 2020

[8]
Network of Interactions Between Gut Microbiome, Host Biomarkers, and Urine Metabolome in Carotid Atherosclerosis.

Front Cell Infect Microbiol. 2021

[9]
MB-SupCon: Microbiome-based Predictive Models via Supervised Contrastive Learning.

J Mol Biol. 2022-8-15

[10]
Integrated analysis of microbiome and metabolome reveals signatures in PDAC tumorigenesis and prognosis.

Microbiol Spectr. 2024-11-5

本文引用的文献

[1]
Multi-omic integration of microbiome data for identifying disease-associated modules.

Nat Commun. 2024-3-23

[2]
Web-based multi-omics integration using the Analyst software suite.

Nat Protoc. 2024-5

[3]
Energy Metabolism Dysregulation in Chronic Kidney Disease.

Kidney360. 2023-8-1

[4]
Screening cell-cell communication in spatial transcriptomics via collective optimal transport.

Nat Methods. 2023-2

[5]
A unified computational framework for single-cell data integration with optimal transport.

Nat Commun. 2022-12-1

[6]
The gut microbiome-metabolome dataset collection: a curated resource for integrative meta-analysis.

NPJ Biofilms Microbiomes. 2022-10-15

[7]
Identification of shared and disease-specific host gene-microbiome associations across human diseases using multi-omic integration.

Nat Microbiol. 2022-6

[8]
Higher-order microbiome interactions and how to find them.

Trends Microbiol. 2022-7

[9]
Interactions between gastric microbiota and metabolites in gastric cancer.

Cell Death Dis. 2021-11-24

[10]
Antagonistic Activity of Bacteria Isolated from the L. Gut against Some Multidrug-Resistant Human Pathogens.

Antibiotics (Basel). 2021-3-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索