Neto Pedro C, Montezuma Diana, Oliveira Sara P, Oliveira Domingos, Fraga João, Monteiro Ana, Monteiro João, Ribeiro Liliana, Gonçalves Sofia, Reinhard Stefan, Zlobec Inti, Pinto Isabel M, Cardoso Jaime S
Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), R. Dr. Roberto Frias, Porto, 4200-465, Porto, Portugal.
Faculty of Engineering, University of Porto (FEUP), R. Dr. Roberto Frias, Porto, 4200-465, Porto, Portugal.
NPJ Precis Oncol. 2024 Mar 5;8(1):56. doi: 10.1038/s41698-024-00539-4.
Considering the profound transformation affecting pathology practice, we aimed to develop a scalable artificial intelligence (AI) system to diagnose colorectal cancer from whole-slide images (WSI). For this, we propose a deep learning (DL) system that learns from weak labels, a sampling strategy that reduces the number of training samples by a factor of six without compromising performance, an approach to leverage a small subset of fully annotated samples, and a prototype with explainable predictions, active learning features and parallelisation. Noting some problems in the literature, this study is conducted with one of the largest WSI colorectal samples dataset with approximately 10,500 WSIs. Of these samples, 900 are testing samples. Furthermore, the robustness of the proposed method is assessed with two additional external datasets (TCGA and PAIP) and a dataset of samples collected directly from the proposed prototype. Our proposed method predicts, for the patch-based tiles, a class based on the severity of the dysplasia and uses that information to classify the whole slide. It is trained with an interpretable mixed-supervision scheme to leverage the domain knowledge introduced by pathologists through spatial annotations. The mixed-supervision scheme allowed for an intelligent sampling strategy effectively evaluated in several different scenarios without compromising the performance. On the internal dataset, the method shows an accuracy of 93.44% and a sensitivity between positive (low-grade and high-grade dysplasia) and non-neoplastic samples of 0.996. On the external test samples varied with TCGA being the most challenging dataset with an overall accuracy of 84.91% and a sensitivity of 0.996.
考虑到影响病理学实践的深刻变革,我们旨在开发一种可扩展的人工智能(AI)系统,用于从全切片图像(WSI)中诊断结直肠癌。为此,我们提出了一种深度学习(DL)系统,该系统从弱标签中学习,一种采样策略可将训练样本数量减少六倍而不影响性能,一种利用一小部分完全注释样本的方法,以及一个具有可解释预测、主动学习功能和平行化的原型。注意到文献中的一些问题,本研究使用了最大的WSI结直肠癌样本数据集之一,约有10500张WSI。在这些样本中,900个是测试样本。此外,我们使用另外两个外部数据集(TCGA和PAIP)以及直接从所提出的原型收集的样本数据集来评估所提出方法的稳健性。我们提出的方法针对基于补丁的切片,根据发育异常的严重程度预测类别,并使用该信息对整个切片进行分类。它采用可解释的混合监督方案进行训练,以利用病理学家通过空间注释引入的领域知识。混合监督方案允许在几种不同场景中有效评估的智能采样策略,而不会影响性能。在内部数据集上,该方法的准确率为93.44%,阳性(低级别和高级别发育异常)与非肿瘤样本之间的敏感性为0.996。在外部测试样本上,不同数据集的表现有所不同,其中TCGA是最具挑战性的数据集,总体准确率为84.91%,敏感性为0.996。
NPJ Precis Oncol. 2024-3-5
IEEE Trans Cybern. 2020-9
Cancers (Basel). 2022-5-18
Sensors (Basel). 2025-4-30
Quant Imaging Med Surg. 2025-3-3
NPJ Precis Oncol. 2024-10-16
Annu Int Conf IEEE Eng Med Biol Soc. 2022-7
Cancers (Basel). 2022-5-18
Diagnostics (Basel). 2022-3-29
Diagnostics (Basel). 2022-2-18
Diagnostics (Basel). 2021-11-15
Diagnostics (Basel). 2021-10-16