文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于从病理切片进行结直肠癌诊断的可解释机器学习系统。

An interpretable machine learning system for colorectal cancer diagnosis from pathology slides.

作者信息

Neto Pedro C, Montezuma Diana, Oliveira Sara P, Oliveira Domingos, Fraga João, Monteiro Ana, Monteiro João, Ribeiro Liliana, Gonçalves Sofia, Reinhard Stefan, Zlobec Inti, Pinto Isabel M, Cardoso Jaime S

机构信息

Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), R. Dr. Roberto Frias, Porto, 4200-465, Porto, Portugal.

Faculty of Engineering, University of Porto (FEUP), R. Dr. Roberto Frias, Porto, 4200-465, Porto, Portugal.

出版信息

NPJ Precis Oncol. 2024 Mar 5;8(1):56. doi: 10.1038/s41698-024-00539-4.


DOI:10.1038/s41698-024-00539-4
PMID:38443695
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10914836/
Abstract

Considering the profound transformation affecting pathology practice, we aimed to develop a scalable artificial intelligence (AI) system to diagnose colorectal cancer from whole-slide images (WSI). For this, we propose a deep learning (DL) system that learns from weak labels, a sampling strategy that reduces the number of training samples by a factor of six without compromising performance, an approach to leverage a small subset of fully annotated samples, and a prototype with explainable predictions, active learning features and parallelisation. Noting some problems in the literature, this study is conducted with one of the largest WSI colorectal samples dataset with approximately 10,500 WSIs. Of these samples, 900 are testing samples. Furthermore, the robustness of the proposed method is assessed with two additional external datasets (TCGA and PAIP) and a dataset of samples collected directly from the proposed prototype. Our proposed method predicts, for the patch-based tiles, a class based on the severity of the dysplasia and uses that information to classify the whole slide. It is trained with an interpretable mixed-supervision scheme to leverage the domain knowledge introduced by pathologists through spatial annotations. The mixed-supervision scheme allowed for an intelligent sampling strategy effectively evaluated in several different scenarios without compromising the performance. On the internal dataset, the method shows an accuracy of 93.44% and a sensitivity between positive (low-grade and high-grade dysplasia) and non-neoplastic samples of 0.996. On the external test samples varied with TCGA being the most challenging dataset with an overall accuracy of 84.91% and a sensitivity of 0.996.

摘要

考虑到影响病理学实践的深刻变革,我们旨在开发一种可扩展的人工智能(AI)系统,用于从全切片图像(WSI)中诊断结直肠癌。为此,我们提出了一种深度学习(DL)系统,该系统从弱标签中学习,一种采样策略可将训练样本数量减少六倍而不影响性能,一种利用一小部分完全注释样本的方法,以及一个具有可解释预测、主动学习功能和平行化的原型。注意到文献中的一些问题,本研究使用了最大的WSI结直肠癌样本数据集之一,约有10500张WSI。在这些样本中,900个是测试样本。此外,我们使用另外两个外部数据集(TCGA和PAIP)以及直接从所提出的原型收集的样本数据集来评估所提出方法的稳健性。我们提出的方法针对基于补丁的切片,根据发育异常的严重程度预测类别,并使用该信息对整个切片进行分类。它采用可解释的混合监督方案进行训练,以利用病理学家通过空间注释引入的领域知识。混合监督方案允许在几种不同场景中有效评估的智能采样策略,而不会影响性能。在内部数据集上,该方法的准确率为93.44%,阳性(低级别和高级别发育异常)与非肿瘤样本之间的敏感性为0.996。在外部测试样本上,不同数据集的表现有所不同,其中TCGA是最具挑战性的数据集,总体准确率为84.91%,敏感性为0.996。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/6114627dace9/41698_2024_539_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/579f04ad2101/41698_2024_539_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/93cddc3eaf52/41698_2024_539_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/f275ed6a569b/41698_2024_539_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/9293f0cc68cb/41698_2024_539_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/0ad82c512a0c/41698_2024_539_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/c257352dff94/41698_2024_539_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/4260f0e5651f/41698_2024_539_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/abbb9e3e0d49/41698_2024_539_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/c584736db5fc/41698_2024_539_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/9cba0a85c48a/41698_2024_539_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/6114627dace9/41698_2024_539_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/579f04ad2101/41698_2024_539_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/93cddc3eaf52/41698_2024_539_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/f275ed6a569b/41698_2024_539_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/9293f0cc68cb/41698_2024_539_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/0ad82c512a0c/41698_2024_539_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/c257352dff94/41698_2024_539_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/4260f0e5651f/41698_2024_539_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/abbb9e3e0d49/41698_2024_539_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/c584736db5fc/41698_2024_539_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/9cba0a85c48a/41698_2024_539_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/10914836/6114627dace9/41698_2024_539_Fig11_HTML.jpg

相似文献

[1]
An interpretable machine learning system for colorectal cancer diagnosis from pathology slides.

NPJ Precis Oncol. 2024-3-5

[2]
Development and validation of artificial intelligence-based prescreening of large-bowel biopsies taken in the UK and Portugal: a retrospective cohort study.

Lancet Digit Health. 2023-11

[3]
Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification.

BMC Med Imaging. 2021-5-8

[4]
A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer.

Sci Rep. 2022-2-9

[5]
Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis.

IEEE Trans Cybern. 2020-9

[6]
iMIL4PATH: A Semi-Supervised Interpretable Approach for Colorectal Whole-Slide Images.

Cancers (Basel). 2022-5-18

[7]
Automatic diagnosis and grading of Prostate Cancer with weakly supervised learning on whole slide images.

Comput Biol Med. 2023-1

[8]
Screening of normal endoscopic large bowel biopsies with interpretable graph learning: a retrospective study.

Gut. 2023-9

[9]
MIST: multiple instance learning network based on Swin Transformer for whole slide image classification of colorectal adenomas.

J Pathol. 2023-2

[10]
Self-supervised learning mechanism for identification of eyelid malignant melanoma in pathologic slides with limited annotation.

Front Med (Lausanne). 2022-9-27

引用本文的文献

[1]
A generalizable pathology foundation model using a unified knowledge distillation pretraining framework.

Nat Biomed Eng. 2025-9-2

[2]
Early detection of colorectal cancer using a hybrid model with enhanced image quality and optimized classification.

Phys Eng Sci Med. 2025-8-11

[3]
A pathology-attention multi-instance learning framework for multimodal classification of colorectal lesions.

Front Pharmacol. 2025-6-6

[4]
Graph-based analysis of histopathological images for lung cancer classification using GLCM features and enhanced graph.

Front Oncol. 2025-5-30

[5]
Bridging Domain Gaps in Computational Pathology: A Comparative Study of Adaptation Strategies.

Sensors (Basel). 2025-4-30

[6]
Advanced deep learning for multi-class colorectal cancer histopathology: integrating transfer learning and ensemble methods.

Quant Imaging Med Surg. 2025-3-3

[7]
Gamma-Glutamyl Transferase Plus Carcinoembryonic Antigen Ratio Index: A Promising Biomarker Associated with Treatment Response to Neoadjuvant Chemotherapy for Patients with Colorectal Cancer Liver Metastases.

Curr Oncol. 2025-2-18

[8]
Construction of diagnostic models with machine-learning algorithms for colorectal cancer based on clinical laboratory parameters.

J Gastrointest Oncol. 2024-10-31

[9]
Integrated multicenter deep learning system for prognostic prediction in bladder cancer.

NPJ Precis Oncol. 2024-10-16

本文引用的文献

[1]
Deep learning for multi-class semantic segmentation enables colorectal cancer detection and classification in digital pathology images.

Sci Rep. 2023-5-24

[2]
Screening of normal endoscopic large bowel biopsies with interpretable graph learning: a retrospective study.

Gut. 2023-9

[3]
Quality Control in Digital Pathology: Automatic Fragment Detection and Counting.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

[4]
iMIL4PATH: A Semi-Supervised Interpretable Approach for Colorectal Whole-Slide Images.

Cancers (Basel). 2022-5-18

[5]
Deep Learning on Histopathological Images for Colorectal Cancer Diagnosis: A Systematic Review.

Diagnostics (Basel). 2022-3-29

[6]
Digital Pathology Implementation in Private Practice: Specific Challenges and Opportunities.

Diagnostics (Basel). 2022-2-18

[7]
A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer.

Sci Rep. 2022-2-9

[8]
Digital Pathology Workflow Implementation at IPATIMUP.

Diagnostics (Basel). 2021-11-15

[9]
Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images.

Nat Commun. 2021-11-2

[10]
A Survival Guide for the Rapid Transition to a Fully Digital Workflow: The "Caltagirone Example".

Diagnostics (Basel). 2021-10-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索