Suppr超能文献

基于 12 导联心电图信号的心肌梗死检测和定位的注意力机制混合网络。

Hybrid Network with Attention Mechanism for Detection and Location of Myocardial Infarction Based on 12-Lead Electrocardiogram Signals.

机构信息

Chongqing University-University of Cincinnati Joint Co-op Institute, Chongqing University, Chongqing 400030, China.

Key Laboratory of Biotechnology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.

出版信息

Sensors (Basel). 2020 Feb 14;20(4):1020. doi: 10.3390/s20041020.

Abstract

The electrocardiogram (ECG) is a non-invasive, inexpensive, and effective tool for myocardial infarction (MI) diagnosis. Conventional detection algorithms require solid domain expertise and rely heavily on handcrafted features. Although previous works have studied deep learning methods for extracting features, these methods still neglect the relationships between different leads and the temporal characteristics of ECG signals. To handle the issues, a novel multi-lead attention (MLA) mechanism integrated with convolutional neural network (CNN) and bidirectional gated recurrent unit (BiGRU) framework (MLA-CNN-BiGRU) is therefore proposed to detect and locate MI via 12-lead ECG records. Specifically, the MLA mechanism automatically measures and assigns the weights to different leads according to their contribution. The two-dimensional CNN module exploits the interrelated characteristics between leads and extracts discriminative spatial features. Moreover, the BiGRU module extracts essential temporal features inside each lead. The spatial and temporal features from these two modules are fused together as global features for classification. In experiments, MI location and detection were performed under both intra-patient scheme and inter-patient scheme to test the robustness of the proposed framework. Experimental results indicate that our intelligent framework achieved satisfactory performance and demonstrated vital clinical significance.

摘要

心电图(ECG)是一种用于心肌梗死(MI)诊断的非侵入性、廉价且有效的工具。传统的检测算法需要坚实的领域专业知识,并严重依赖手工制作的特征。尽管之前的研究已经研究了用于提取特征的深度学习方法,但这些方法仍然忽略了不同导联之间的关系和 ECG 信号的时间特征。为了解决这些问题,提出了一种新的多导联注意(MLA)机制,该机制与卷积神经网络(CNN)和双向门控循环单元(BiGRU)框架(MLA-CNN-BiGRU)集成,用于通过 12 导联 ECG 记录检测和定位 MI。具体来说,MLA 机制根据其贡献自动测量和分配不同导联的权重。二维 CNN 模块利用导联之间的相关性特征,并提取有区别的空间特征。此外,BiGRU 模块提取每个导联内部的重要时间特征。这两个模块的空间和时间特征融合在一起作为分类的全局特征。在实验中,在患者内方案和患者间方案下进行 MI 位置和检测,以测试所提出框架的鲁棒性。实验结果表明,我们的智能框架取得了令人满意的性能,并表现出重要的临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2b/7071130/f606d196ba44/sensors-20-01020-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验