Suppr超能文献

OptEF-BCI:一种基于优化的混合式脑电图和功能近红外光谱脑机接口

OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS-Brain Computer Interface.

作者信息

Ali Muhammad Umair, Kim Kwang Su, Kallu Karam Dad, Zafar Amad, Lee Seung Won

机构信息

Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea.

Department of Scientific Computing, Pukyong National University, Busan 48513, Republic of Korea.

出版信息

Bioengineering (Basel). 2023 May 18;10(5):608. doi: 10.3390/bioengineering10050608.

Abstract

Multimodal data fusion (electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS)) has been developed as an important neuroimaging research field in order to circumvent the inherent limitations of individual modalities by combining complementary information from other modalities. This study employed an optimization-based feature selection algorithm to systematically investigate the complementary nature of multimodal fused features. After preprocessing the acquired data of both modalities (i.e., EEG and fNIRS), the temporal statistical features were computed separately with a 10 s interval for each modality. The computed features were fused to create a training vector. A wrapper-based binary enhanced whale optimization algorithm (E-WOA) was used to select the optimal/efficient fused feature subset using the support-vector-machine-based cost function. An online dataset of 29 healthy individuals was used to evaluate the performance of the proposed methodology. The findings suggest that the proposed approach enhances the classification performance by evaluating the degree of complementarity between characteristics and selecting the most efficient fused subset. The binary E-WOA feature selection approach showed a high classification rate (94.22 ± 5.39%). The classification performance exhibited a 3.85% increase compared with the conventional whale optimization algorithm. The proposed hybrid classification framework outperformed both the individual modalities and traditional feature selection classification ( < 0.01). These findings indicate the potential efficacy of the proposed framework for several neuroclinical applications.

摘要

多模态数据融合(脑电图(EEG)和功能近红外光谱(fNIRS))已发展成为一个重要的神经影像学研究领域,旨在通过整合来自其他模态的互补信息来规避单个模态的固有局限性。本研究采用基于优化的特征选择算法,系统地研究多模态融合特征的互补性质。在对两种模态(即EEG和fNIRS)采集的数据进行预处理后,以10秒的时间间隔分别计算每种模态的时间统计特征。将计算得到的特征进行融合以创建一个训练向量。基于包装器的二进制增强鲸鱼优化算法(E-WOA)被用于使用基于支持向量机的代价函数来选择最优/高效的融合特征子集。使用一个包含29名健康个体的在线数据集来评估所提出方法的性能。研究结果表明,所提出的方法通过评估特征之间的互补程度并选择最有效的融合子集来提高分类性能。二进制E-WOA特征选择方法显示出较高的分类率(94.22±5.39%)。与传统鲸鱼优化算法相比,分类性能提高了3.85%。所提出的混合分类框架优于单个模态和传统特征选择分类(<0.01)。这些发现表明所提出的框架在多个神经临床应用中具有潜在的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c14/10215946/8be0ab7692ce/bioengineering-10-00608-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验