Suppr超能文献

脑电图(EEG)和功能近红外光谱(fNIRS)的早期融合可改善运动想象分类。

Early-stage fusion of EEG and fNIRS improves classification of motor imagery.

作者信息

Li Yang, Zhang Xin, Ming Dong

机构信息

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.

The Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.

出版信息

Front Neurosci. 2023 Jan 9;16:1062889. doi: 10.3389/fnins.2022.1062889. eCollection 2022.

Abstract

INTRODUCTION

Many research papers have reported successful implementation of hybrid brain-computer interfaces by complementarily combining EEG and fNIRS, to improve classification performance. However, modality or feature fusion of EEG and fNIRS was usually designed for specific user cases, which were generally customized and hard to be generalized. How to effectively utilize information from the two modalities was still unclear.

METHODS

In this paper, we conducted a study to investigate the stage of bi-modal fusion based on EEG and fNIRS. A Y-shaped neural network was proposed and evaluated on an open dataset, which fuses the bimodal information in different stages.

RESULTS

The results suggests that the early-stage fusion of EEG and fNIRS have significantly higher performance compared to middle-stage and late-stage fusion network configuration ( = 57, < 0.05). With the proposed framework, the average accuracy of 29 participants reaches 76.21% in the left-or-right hand motor imagery task in leave-one-out cross-validation, using bi-modal data as network inputs respectively, which is in the same level as the state-of-the-art hybrid BCI methods based on EEG and fNIRS data.

摘要

引言

许多研究论文报道了通过将脑电图(EEG)和功能近红外光谱(fNIRS)互补结合来成功实现混合脑机接口,以提高分类性能。然而,EEG和fNIRS的模态或特征融合通常是针对特定用户案例设计的,这些案例通常是定制的,难以推广。如何有效利用这两种模态的信息仍不明确。

方法

在本文中,我们进行了一项研究,以探究基于EEG和fNIRS的双模态融合阶段。提出了一种Y形神经网络,并在一个开放数据集上进行评估,该网络在不同阶段融合双模态信息。

结果

结果表明,与中期和后期融合网络配置相比,EEG和fNIRS的早期融合具有显著更高的性能(= 57,< 0.05)。使用所提出的框架,在留一法交叉验证中,29名参与者在左右手运动想象任务中的平均准确率分别达到76.21%,使用双模态数据作为网络输入,这与基于EEG和fNIRS数据的最先进混合脑机接口方法处于同一水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe47/9869134/6f7fff9f4de3/fnins-16-1062889-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验