Suppr超能文献

使用串联排列微腔室的粒径依赖性成分分离

Particle Size-Dependent Component Separation Using Serially Arrayed Micro-Chambers.

作者信息

Horade Mitsuhiro, Okumura Ryuusei, Yamawaki Tasuku, Yashima Masahito, Murakami Shuichi, Saiki Tsunemasa

机构信息

Department of Mechanical Systems Engineering, National Defense Academy of Japan, 1-10-20 Hashirimizu, Yokosuka 239-8686, Japan.

Osaka Research Institute of Industrial Science and Technology, 2-7-1 Ayumino, Izumi 594-1157, Japan.

出版信息

Micromachines (Basel). 2023 Apr 24;14(5):919. doi: 10.3390/mi14050919.

Abstract

The purpose of this research was to enable component separation based on simple control of the flow rate. We investigated a method that eliminated the need for a centrifuge and enabled easy component separation on the spot without using a battery. Specifically, we adopted an approach that uses microfluidic devices, which are inexpensive and highly portable, and devised the channel within the fluidic device. The proposed design was a simple series of connection chambers of the same shape, connected via interconnecting channels. In this study, polystyrene particles with different sizes were used, and their behavior was evaluated by experimentally observing the flow in the chamber using a high-speed camera. It was found that the objects with larger particle diameters required more time to pass, whereas the objects with smaller particle diameters flowed in a short time; this implied that the particles with a smaller size could be extracted more rapidly from the outlet. By plotting the trajectories of the particles for each unit of time, the passing speed of the objects with large particle diameters was confirmed to be particularly low. It was also possible to trap the particles within the chamber if the flow rate was below a specific threshold. By applying this property to blood, for instance, we expected plasma components and red blood cells to be extracted first.

摘要

本研究的目的是通过简单控制流速实现成分分离。我们研究了一种无需离心机且无需使用电池就能在现场轻松实现成分分离的方法。具体而言,我们采用了一种使用微流控装置的方法,这种装置价格低廉且便于携带,并设计了流体装置内的通道。所提出的设计是一系列形状相同的连接腔室,通过互连通道相连。在本研究中,使用了不同尺寸的聚苯乙烯颗粒,并通过使用高速相机对腔室内的流动进行实验观察来评估它们的行为。结果发现,粒径较大的物体通过所需时间更长,而粒径较小的物体在短时间内就能流动;这意味着尺寸较小的颗粒可以更快地从出口提取出来。通过绘制每个时间单位内颗粒的轨迹,证实粒径较大的物体的通过速度特别低。如果流速低于特定阈值,也有可能将颗粒捕获在腔室内。例如,通过将此特性应用于血液,我们期望首先提取血浆成分和红细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c7c/10222204/ca98274748cd/micromachines-14-00919-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验