Suppr超能文献

受网络生物学启发的机器学习特征可预测癌症基因靶点并揭示靶点协调机制。

Network Biology-Inspired Machine Learning Features Predict Cancer Gene Targets and Reveal Target Coordinating Mechanisms.

作者信息

Weiskittel Taylor M, Cao Andrew, Meng-Lin Kevin, Lehmann Zachary, Feng Benjamin, Correia Cristina, Zhang Cheng, Wisniewski Philip, Zhu Shizhen, Yong Ung Choong, Li Hu

机构信息

Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.

Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.

出版信息

Pharmaceuticals (Basel). 2023 May 16;16(5):752. doi: 10.3390/ph16050752.

Abstract

Anticipating and understanding cancers' need for specific gene activities is key for novel therapeutic development. Here we utilized DepMap, a cancer gene dependency screen, to demonstrate that machine learning combined with network biology can produce robust algorithms that both predict what genes a cancer is dependent on and what network features coordinate such gene dependencies. Using network topology and biological annotations, we constructed four groups of novel engineered machine learning features that produced high accuracies when predicting binary gene dependencies. We found that in all examined cancer types, F1 scores were greater than 0.90, and model accuracy remained robust under multiple hyperparameter tests. We then deconstructed these models to identify tumor type-specific coordinators of gene dependency and identified that in certain cancers, such as thyroid and kidney, tumors' dependencies are highly predicted by gene connectivity. In contrast, other histologies relied on pathway-based features such as lung, where gene dependencies were highly predictive by associations with cell death pathway genes. In sum, we show that biologically informed network features can be a valuable and robust addition to predictive pharmacology models while simultaneously providing mechanistic insights.

摘要

预测和理解癌症对特定基因活性的需求是新型疗法开发的关键。在此,我们利用癌症基因依赖性筛选工具DepMap来证明,机器学习与网络生物学相结合能够产生强大的算法,既能预测癌症依赖的基因,又能预测协调此类基因依赖性的网络特征。利用网络拓扑结构和生物学注释,我们构建了四组新型的工程化机器学习特征,在预测二元基因依赖性时具有很高的准确性。我们发现,在所有检测的癌症类型中,F1分数均大于0.90,并且在多次超参数测试下模型准确性依然稳健。然后,我们解构这些模型以识别基因依赖性的肿瘤类型特异性协调因子,并确定在某些癌症中,如甲状腺癌和肾癌,肿瘤的依赖性可通过基因连通性高度预测。相比之下,其他组织学类型则依赖基于通路的特征,如肺癌,其中基因依赖性可通过与细胞死亡通路基因的关联高度预测。总之,我们表明,具有生物学信息的网络特征可以成为预测药理学模型中有价值且稳健的补充,同时提供机制性见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26c9/10223789/e5224581be6f/pharmaceuticals-16-00752-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验