文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Fe(III)/Fe(II) 金属有机纳米粒子在生物医学应用中的最新进展

Recent Advances of Fe(III)/Fe(II)-MPNs in Biomedical Applications.

作者信息

Chen Weipeng, Liu Miao, Yang Hanping, Nezamzadeh-Ejhieh Alireza, Lu Chengyu, Pan Ying, Liu Jianqiang, Bai Zhi

机构信息

The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523700, China.

Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.

出版信息

Pharmaceutics. 2023 Apr 23;15(5):1323. doi: 10.3390/pharmaceutics15051323.


DOI:10.3390/pharmaceutics15051323
PMID:37242566
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10223096/
Abstract

Metal-phenolic networks (MPNs) are a new type of nanomaterial self-assembled by metal ions and polyphenols that have been developed rapidly in recent decades. They have been widely investigated, in the biomedical field, for their environmental friendliness, high quality, good bio-adhesiveness, and bio-compatibility, playing a crucial role in tumor treatment. As the most common subclass of the MPNs family, Fe-based MPNs are most frequently used in chemodynamic therapy (CDT) and phototherapy (PTT), where they are often used as nanocoatings to encapsulate drugs, as well as good Fenton reagents and photosensitizers to improve tumor therapeutic efficiency substantially. In this review, strategies for preparing various types of Fe-based MPNs are first summarized. We highlight the advantages of Fe-based MPNs under the different species of polyphenol ligands for their application in tumor treatments. Finally, some current problems and challenges of Fe-based MPNs, along with a future perspective on biomedical applications, are discussed.

摘要

金属-酚醛网络(MPNs)是近几十年来迅速发展起来的一类由金属离子和多酚自组装而成的新型纳米材料。由于其环境友好性、高质量、良好的生物粘附性和生物相容性,它们在生物医学领域得到了广泛研究,在肿瘤治疗中发挥着关键作用。作为MPNs家族最常见的子类,铁基MPNs最常用于化学动力学疗法(CDT)和光动力疗法(PTT),在这些疗法中,它们常被用作纳米涂层来封装药物,以及作为良好的芬顿试剂和光敏剂,以大幅提高肿瘤治疗效率。在这篇综述中,首先总结了制备各类铁基MPNs的策略。我们强调了不同种类多酚配体下铁基MPNs在肿瘤治疗应用中的优势。最后,讨论了铁基MPNs目前存在的一些问题和挑战,以及其生物医学应用的未来前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/2b40f4412bf5/pharmaceutics-15-01323-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/1dd707ad21c2/pharmaceutics-15-01323-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/55d9c62d57f9/pharmaceutics-15-01323-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/2374bd0e41ca/pharmaceutics-15-01323-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/c56f64b54f24/pharmaceutics-15-01323-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/4d06614abdd5/pharmaceutics-15-01323-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/f15b90f12739/pharmaceutics-15-01323-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/a366844a21ec/pharmaceutics-15-01323-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/4afb385f0cac/pharmaceutics-15-01323-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/2e128b4839f5/pharmaceutics-15-01323-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/25962caca1a0/pharmaceutics-15-01323-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/eb7b57e7b0be/pharmaceutics-15-01323-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/c37417917c78/pharmaceutics-15-01323-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/92bf67a54bd0/pharmaceutics-15-01323-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/824d93f2c80f/pharmaceutics-15-01323-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/d9689e7b278c/pharmaceutics-15-01323-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/579cca1dab02/pharmaceutics-15-01323-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/74079fa2614f/pharmaceutics-15-01323-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/cd1a0660a6b8/pharmaceutics-15-01323-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/f23ab68978b9/pharmaceutics-15-01323-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/26d290f36ddf/pharmaceutics-15-01323-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/2b40f4412bf5/pharmaceutics-15-01323-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/1dd707ad21c2/pharmaceutics-15-01323-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/55d9c62d57f9/pharmaceutics-15-01323-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/2374bd0e41ca/pharmaceutics-15-01323-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/c56f64b54f24/pharmaceutics-15-01323-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/4d06614abdd5/pharmaceutics-15-01323-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/f15b90f12739/pharmaceutics-15-01323-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/a366844a21ec/pharmaceutics-15-01323-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/4afb385f0cac/pharmaceutics-15-01323-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/2e128b4839f5/pharmaceutics-15-01323-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/25962caca1a0/pharmaceutics-15-01323-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/eb7b57e7b0be/pharmaceutics-15-01323-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/c37417917c78/pharmaceutics-15-01323-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/92bf67a54bd0/pharmaceutics-15-01323-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/824d93f2c80f/pharmaceutics-15-01323-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/d9689e7b278c/pharmaceutics-15-01323-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/579cca1dab02/pharmaceutics-15-01323-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/74079fa2614f/pharmaceutics-15-01323-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/cd1a0660a6b8/pharmaceutics-15-01323-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/f23ab68978b9/pharmaceutics-15-01323-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/26d290f36ddf/pharmaceutics-15-01323-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/10223096/2b40f4412bf5/pharmaceutics-15-01323-g020.jpg

相似文献

[1]
Recent Advances of Fe(III)/Fe(II)-MPNs in Biomedical Applications.

Pharmaceutics. 2023-4-23

[2]
Recent advances of copper-based metal phenolic networks in biomedical applications.

Colloids Surf B Biointerfaces. 2024-12

[3]
Metal-phenolic networks for cancer theranostics.

Biomater Sci. 2021-4-21

[4]
Employing single valency polyphenol to prepare metal-phenolic network antitumor reagents through FeOOH assistance.

J Control Release. 2023-6

[5]
Fe(III)-Naphthazarin Metal-Phenolic Networks for Glutathione-Depleting Enhanced Ferroptosis-Apoptosis Combined Cancer Therapy.

Small. 2023-5

[6]
Polydopamine nanoparticles coated with a metal-polyphenol network for enhanced photothermal/chemodynamic cancer combination therapy.

Int J Biol Macromol. 2023-5-31

[7]
An Adenosine Triphosphate-Responsive Autocatalytic Fenton Nanoparticle for Tumor Ablation with Self-Supplied HO and Acceleration of Fe(III)/Fe(II) Conversion.

Nano Lett. 2018-12-12

[8]
Recent Advances in Metal-Phenolic Networks for Cancer Theranostics.

Small. 2021-10

[9]
Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances.

Small. 2022-2

[10]
Metal-Phenolic Networks as Versatile Coating Materials for Biomedical Applications.

ACS Appl Bio Mater. 2022-5-10

引用本文的文献

[1]
Self-assembled nanomaterials enable extended lithium release.

J Mater Chem B. 2025-7-22

[2]
Nanomedicine's shining armor: understanding and leveraging the metal-phenolic networks.

J Nanobiotechnology. 2025-3-2

[3]
MOF-derived intelligent arenobufagin nanocomposites with glucose metabolism inhibition for enhanced bioenergetic therapy and integrated photothermal-chemodynamic-chemotherapy.

J Nanobiotechnology. 2025-1-16

[4]
Advances in multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer starvation therapy.

Expert Rev Mol Med. 2024-10-14

[5]
Synthesis and Applications of Hybrid Polymer Networks Based on Renewable Natural Macromolecules.

Molecules. 2023-8-12

[6]
Iron-Gallic Acid Peptide Nanoparticles as a Versatile Platform for Cellular Delivery with Synergistic ROS Enhancement Effect.

Pharmaceutics. 2023-6-21

本文引用的文献

[1]
Engineering metal-phenolic networks for enhancing cancer therapy by tumor microenvironment modulation.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023

[2]
Applications of metal-phenolic networks in nanomedicine: a review.

Biomater Sci. 2022-10-11

[3]
Recent Advances in the Development and Antimicrobial Applications of Metal-Phenolic Networks.

Adv Sci (Weinh). 2022-9

[4]
Current status and prospects of metal-organic frameworks for bone therapy and bone repair.

J Mater Chem B. 2022-7-13

[5]
Fenton metal nanomedicines for imaging-guided combinatorial chemodynamic therapy against cancer.

Asian J Pharm Sci. 2022-3

[6]
Combination of Metal-Phenolic Network-Based Immunoactive Nanoparticles and Bipolar Irreversible Electroporation for Effective Cancer Immunotherapy.

Small. 2022-6

[7]
All-in-one approaches for triple-negative breast cancer therapy: metal-phenolic nanoplatform for MR imaging-guided combinational therapy.

J Nanobiotechnology. 2022-5-12

[8]
Metal-Phenolic Networks as Versatile Coating Materials for Biomedical Applications.

ACS Appl Bio Mater. 2022-5-10

[9]
DNA-Based MXFs to Enhance Radiotherapy and Stimulate Robust Antitumor Immune Responses.

Nano Lett. 2022-4-13

[10]
Synergistic checkpoint-blockade and radiotherapy-radiodynamic therapy via an immunomodulatory nanoscale metal-organic framework.

Nat Biomed Eng. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索