Rajabi Amir Hossein, Jaffe Michael, Arinzeh Treena Livingston
Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA.
Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA.
Acta Biomater. 2015 Sep;24:12-23. doi: 10.1016/j.actbio.2015.07.010. Epub 2015 Jul 7.
UNLABELLED: The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues raised the question whether or not electric fields play an important role in cell function. It has kindled research and the development of technologies in emulating biological electricity for tissue regeneration. Promising effects of electrical stimulation on cell growth and differentiation and tissue growth has led to interest in using piezoelectric scaffolds for tissue repair. Piezoelectric materials can generate electrical activity when deformed. Hence, an external source to apply electrical stimulation or implantation of electrodes is not needed. Various piezoelectric materials have been employed for different tissue repair applications, particularly in bone repair, where charges induced by mechanical stress can enhance bone formation; and in neural tissue engineering, in which electric pulses can stimulate neurite directional outgrowth to fill gaps in nervous tissue injuries. In this review, a summary of piezoelectricity in different biological tissues, mechanisms through which electrical stimulation may affect cellular response, and recent advances in the fabrication and application of piezoelectric scaffolds will be discussed. STATEMENT OF SIGNIFICANCE: The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues has kindled research and the development of technologies using electrical stimulation for tissue regeneration. Piezoelectric materials generate electrical activity in response to deformations and allow for the delivery of an electrical stimulus without the need for an external power source. As a scaffold for tissue engineering, growing interest exists due to its potential of providing electrical stimulation to cells to promote tissue formation. In this review, we cover the discovery of piezoelectricity in biological tissues, its connection to streaming potentials, biological response to electrical stimulation and commonly used piezoelectric materials for tissue regeneration. This review summarizes their potential as a promising scaffold in the tissue engineering field.
未标注:生物组织中压电性、内源性电场和跨膜电位的发现引发了电场是否在细胞功能中发挥重要作用的问题。这激发了模拟生物电用于组织再生的研究和技术开发。电刺激对细胞生长、分化及组织生长的显著效果引发了人们对使用压电支架进行组织修复的兴趣。压电材料在受力变形时会产生电活动。因此,无需外部电源施加电刺激或植入电极。各种压电材料已被用于不同的组织修复应用,特别是在骨修复中,机械应力诱导的电荷可增强骨形成;以及在神经组织工程中,电脉冲可刺激神经突定向生长以填补神经组织损伤的间隙。在这篇综述中,将讨论不同生物组织中的压电性、电刺激可能影响细胞反应的机制以及压电支架制造和应用的最新进展。 重要性声明:生物组织中压电性、内源性电场和跨膜电位的发现激发了利用电刺激进行组织再生的研究和技术开发。压电材料在受力变形时会产生电活动,无需外部电源即可提供电刺激。作为组织工程的支架,由于其能够为细胞提供电刺激以促进组织形成的潜力,人们对其兴趣与日俱增。在这篇综述中,我们涵盖了生物组织中压电性的发现、其与流动电位的联系、对电刺激的生物学反应以及用于组织再生的常用压电材料。这篇综述总结了它们作为组织工程领域中一种有前景的支架的潜力。
Acta Biomater. 2015-9
Acta Biomater. 2018-4-16
Biomed Tech (Berl). 2022-4-26
Polymers (Basel). 2024-10-2
Biomater Sci. 2023-11-7
Inflamm Regen. 2018-2-27
Front Bioeng Biotechnol. 2025-7-10
Mater Today Bio. 2025-7-2
Exploration (Beijing). 2025-2-27
Bioact Mater. 2025-6-13
Adv Sci (Weinh). 2025-8