Suppr超能文献

靶向人甲型流感病毒:药物样候选物的虚拟筛选方法、局限性和陷阱,包括骨架跃迁和化合物剖析。

Targeting the Human Influenza a Virus: The Methods, Limitations, and Pitfalls of Virtual Screening for Drug-like Candidates Including Scaffold Hopping and Compound Profiling.

机构信息

Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Colonia San Manuel, Puebla 72570, Mexico.

Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico.

出版信息

Viruses. 2023 Apr 26;15(5):1056. doi: 10.3390/v15051056.

Abstract

In this study, we describe the input data and processing steps to find antiviral lead compounds by a virtual screen. Two-dimensional and three-dimensional filters were designed based on the X-ray crystallographic structures of viral neuraminidase co-crystallized with substrate sialic acid, substrate-like DANA, and four inhibitors (oseltamivir, zanamivir, laninamivir, and peramivir). As a result, ligand-receptor interactions were modeled, and those necessary for binding were utilized as screen filters. Prospective virtual screening (VS) was carried out in a virtual chemical library of over half a million small organic substances. Orderly filtered moieties were investigated based on 2D- and 3D-predicted binding fingerprints disregarding the "rule-of-five" for drug likeness, and followed by docking and ADMET profiling. Two-dimensional and three-dimensional screening were supervised after enriching the dataset with known reference drugs and decoys. All 2D, 3D, and 4D procedures were calibrated before execution, and were then validated. Presently, two top-ranked substances underwent successful patent filing. In addition, the study demonstrates how to work around reported VS pitfalls in detail.

摘要

在这项研究中,我们描述了通过虚拟筛选寻找抗病毒先导化合物的输入数据和处理步骤。根据与底物唾液酸、底物类似物 DANA 以及四种抑制剂(奥司他韦、扎那米韦、兰尼米韦和帕拉米韦)共结晶的病毒神经氨酸酶的 X 射线晶体结构,设计了二维和三维滤波器。结果,对配体-受体相互作用进行了建模,并将结合所必需的部分用作筛选滤波器。在超过五十万个小分子的虚拟化学库中进行了有针对性的虚拟筛选(VS)。根据 2D 和 3D 预测的结合指纹图,对有序过滤的部分进行了研究,而不考虑药物相似性的“五规则”,然后进行对接和 ADMET 分析。在使用已知参考药物和诱饵丰富数据集后,对二维和三维筛选进行了监督。在执行之前,对所有 2D、3D 和 4D 程序进行了校准,然后进行了验证。目前,两种排名靠前的物质已成功申请专利。此外,该研究还详细展示了如何解决报告的 VS 陷阱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de50/10221779/5180ce1f1f13/viruses-15-01056-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验