Suppr超能文献

用于双靶肿瘤乏氧缓解和增强光动力治疗的杂化生物界面工程纳米平台。

Hybrid biointerface engineering nanoplatform for dual-targeted tumor hypoxia relief and enhanced photodynamic therapy.

机构信息

School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.

School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.

出版信息

J Colloid Interface Sci. 2023 Oct;647:211-223. doi: 10.1016/j.jcis.2023.05.114. Epub 2023 May 21.

Abstract

The clinical application of photodynamic therapy (PDT) is limited by the lack of tumor selectivity of photosensitizer (PS) and the hypoxic tumor microenvironment (TME). To address these limitations of PDT, we developed a hybrid engineered biointerface nanoplatform that integrated anti-epidermal growth factor receptor (EGFR)-aptamer (EApt)-modified liposomes with tumor cell membranes (TMs) to create M/L-EApt. M/L-EApt exhibited enhanced stability and significant dual-targeting ability, enabling selectively accumulate in hypoxic tumor regions after systemic infusion. PHI@M/L-EApt, formed by M/L-EApt loaded with an oxygen carrier perfluorotributylamine (PFTBA) and IR780 (a PS), effectively promoted the therapeutic performance of PDT by reversing the hypoxic TME and increasing the accumulation of IR780 at the tumor sites, resulting in a robust anti-tumor efficacy. In vivo results showed that PHI@M/L-EApt treatment effectively suppressed the growth of triple-negative breast tumors in mice. Our findings demonstrated the synergistic effect of oxygen supply and PDT on tumor treatment using PHI@M/L-EApt. This study presented a biomimetic interface engineering strategy and dual-targeted hybrid nanoplatform for relieving hypoxic TME and potentially facilitating the clinical application of PDT.

摘要

光动力疗法(PDT)的临床应用受到光敏剂(PS)缺乏肿瘤选择性和缺氧肿瘤微环境(TME)的限制。为了解决 PDT 的这些局限性,我们开发了一种混合工程生物界面纳米平台,该平台将表皮生长因子受体(EGFR)适配体(EApt)修饰的脂质体与肿瘤细胞膜(TM)集成在一起,以创建 M/L-EApt。M/L-EApt 表现出增强的稳定性和显著的双重靶向能力,能够在全身输注后选择性地在缺氧肿瘤区域积累。M/L-EApt 装载氧载体全氟三丁胺(PFTBA)和 IR780(PS)后形成的 PHI@M/L-EApt,通过逆转缺氧 TME 和增加肿瘤部位的 IR780 积累,有效地促进了 PDT 的治疗效果,从而产生了强大的抗肿瘤功效。体内结果表明,PHI@M/L-EApt 治疗有效地抑制了小鼠三阴性乳腺癌的生长。我们的研究结果表明,使用 PHI@M/L-EApt 对肿瘤治疗的供氧和 PDT 具有协同作用。本研究提出了一种仿生界面工程策略和双靶向杂交纳米平台,用于缓解缺氧 TME,并有可能促进 PDT 的临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验