IEEE Trans Biomed Eng. 2023 Dec;70(12):3300-3311. doi: 10.1109/TBME.2023.3282155. Epub 2023 Nov 21.
Using data-driven methods to design stimuli (e.g., electrical currents) which evoke desired neural responses in different neuron-types for applications in treating neural disorders.
The problem of stimulus design is formulated as estimating the inverse of a many-to-one non-linear "forward" mapping, which takes as input the parameters of waveform and outputs the corresponding neural response, directly from the data. A novel optimization framework "PATHFINDER" is proposed in order to estimate the previously mentioned inverse mapping. A comparison with existing data-driven methods, namely conditional density estimation methods and numerical inversion of an estimated forward mapping is performed with different dataset sizes in toy examples and in detailed computational models of biological neurons.
Using data from toy examples, as well as computational models of biological neurons, we show that PATHFINDER can outperform existing methods when the number of samples is low (i.e., a few hundred).
Traditionally, the design of such stimuli has been model-driven and/or uses simplistic intuition, often aided by trial-and-error. Due to the inherent challenges in accurately modeling neural responses, as well as the sophistication of stimuli's effect on neural membrane potentials, data-driven approaches offer an attractive alternative. Our results suggest that PATHFINDER can be applied for optimizing stimulation parameters in experiments and treatments of neural disorders due to it requiring low number of data points.
使用数据驱动的方法来设计刺激(例如电流),以在治疗神经障碍的应用中引发不同神经元类型的所需神经反应。
刺激设计问题被表述为从数据中直接估计非线性“前向”映射的多对一逆映射的参数,该映射将波形的参数作为输入,输出相应的神经响应。为了估计前面提到的逆映射,提出了一种新颖的优化框架“PATHFINDER”。在玩具示例和生物神经元的详细计算模型中,使用不同的数据集大小,对 PATHFINDER 与现有的数据驱动方法(即条件密度估计方法和估计的前向映射的数值反演)进行了比较。
使用来自玩具示例的数据以及生物神经元的计算模型,我们表明 PATHFINDER 在样本数量较少(即几百个)时可以优于现有方法。
传统上,这种刺激的设计一直是模型驱动的,并且/或者使用简单的直觉,通常借助反复试验。由于准确建模神经反应的固有挑战,以及刺激对神经膜电位的影响的复杂性,数据驱动的方法提供了一种有吸引力的替代方法。由于它需要较少的数据点,因此我们的结果表明 PATHFINDER 可以应用于优化神经障碍实验和治疗中的刺激参数。