Suppr超能文献

基于临床因素和前列腺特异性抗原的前列腺癌风险预测。

Prostate cancer risk prediction based on clinical factors and prostate-specific antigen.

机构信息

Workplace Health Institute, Total Health Care Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, B1, 55 Sejong-daero, Jung-gu, 06521, Seoul, South Korea.

Department of Economics, Texas A&M University, 4228 TAMU, 77843, College Station, TX, USA.

出版信息

BMC Urol. 2023 Jun 3;23(1):100. doi: 10.1186/s12894-023-01259-w.

Abstract

INTRODUCTION

The incidence rate of prostate cancer (PCa) has continued to rise in Korea. This study aimed to construct and evaluate a 5-year PCa risk prediction model using a cohort with PSA < 10 ng/mL by incorporating PSA levels and individual factors.

METHODS

The PCa risk prediction model including PSA levels and individual risk factors was constructed using a cohort of 69,319 participants from the Kangbuk Samsung Health Study. 201 registered PCa incidences were observed. A Cox proportional hazards regression model was used to generate the 5-year risk of PCa. The performance of the model was assessed using standards of discrimination and calibration.

RESULTS

The risk prediction model included age, smoking status, alcohol consumption, family history of PCa, past medical history of dyslipidemia, cholesterol levels, and PSA level. Especially, an elevated PSA level was a significant risk factor of PCa (hazard ratio [HR]: 1.77, 95% confidence interval [CI]: [1.67-1.88]). This model performed well with sufficient discrimination ability and satisfactory calibration (C-statistic: 0.911, 0.874; Nam-D'Agostino test statistic:19.76, 4.21 in the development and validation cohort, respectively).

CONCLUSIONS

Our risk prediction model was effective in predicting PCa in a population according to PSA levels. When PSA levels are inconclusive, an assessment of both PSA and specific individual risk factors (e.g., age, total cholesterol, and family history of PCa) could provide further information in predicting PCa.

摘要

简介

在韩国,前列腺癌(PCa)的发病率持续上升。本研究旨在构建并评估一个基于 PSA<10ng/ml 人群的 5 年 PCa 风险预测模型,该模型纳入了 PSA 水平和个体因素。

方法

利用来自 Kangbuk Samsung Health 研究的 69319 名参与者队列,构建了包含 PSA 水平和个体危险因素的 PCa 风险预测模型。观察到 201 例 PCa 发病。使用 Cox 比例风险回归模型生成 5 年 PCa 风险。使用区分度和校准度标准评估模型性能。

结果

风险预测模型包括年龄、吸烟状况、饮酒状况、PCa 家族史、既往血脂异常病史、胆固醇水平和 PSA 水平。特别是,升高的 PSA 水平是 PCa 的显著危险因素(危险比 [HR]:1.77,95%置信区间 [CI]:[1.67-1.88])。该模型具有良好的区分能力和令人满意的校准度(开发和验证队列的 C 统计量分别为 0.911 和 0.874;Nam-D'Agostino 检验统计量分别为 19.76 和 4.21)。

结论

我们的风险预测模型在根据 PSA 水平预测人群中 PCa 方面是有效的。当 PSA 水平不确定时,评估 PSA 和特定个体危险因素(如年龄、总胆固醇和 PCa 家族史)可以提供更多预测 PCa 的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/10239594/c011a00b7bb3/12894_2023_1259_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验