文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米椭圆形 BaTiFeO@NiFeO 纳米复合材料的构建及特性研究——作为 HO 测定的有效平台

Construction and characterization of nano-oval BaTiFeO@NiFeO nanocomposites as an effective platform for the determination of HO.

机构信息

Solid State Physics Department, Physics Research Division, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt.

Applied Organic Chemistry Department, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.

出版信息

Sci Rep. 2023 Jun 3;13(1):9048. doi: 10.1038/s41598-023-36076-6.


DOI:10.1038/s41598-023-36076-6
PMID:37270658
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10239493/
Abstract

Talented di-phase ferrite/ferroelectric BaTi.Fe.O@NiFeO (BFT@NFO) in oval nano-morphology was chemically synthesized using controlled sol-gel processes and calcined at 600 °C. The effects of shielding using NiFeO (NFO) nanoparticles on the microstructure, phase transition, thermal, and relative permittivity of BaTi.Fe.O (BTF) nano-perovskite were systematically explored. X-ray diffraction patterns and Full-Prof software exhibited the forming of the BaTiFeO hexagonal phase. TEM and SEM images demonstrated that the coating of BaTi0.Fe.O has been successfully controlled with exquisite nano-oval NiFeO shapes. The NFO shielding can significantly promote the thermal stability and the relative permittivity of BFT@NFO pero-magnetic nanocomposites and lowers the Curie temperature. Thermogravimetric and optical analysis were used to test the thermal stability and estimate the effective optical parameters. Magnetic studies showed a decrease in saturation magnetization of NiFeO NPs compared to their bulk system, which is attributed to surface spin disorder. Herein, characterization and the sensitive electrochemical sensor were constructed for the evaluation of peroxide oxidation detection using the chemically adjusted nano-ovals barium titanate-iron@nickel ferrite nanocomposites. Finally, The BFT@NFO exhibited excellent electrochemical properties which can be ascribed to this compound possessing two electrochemical active components and/or the nano-ovals structure of the particles which can further improve the electrochemistry through the possible oxidation states and the synergistic effect. The result advocates that when the BTF is shielded with NFO nanoparticles the thermal, dielectric, and electrochemical properties of nano-oval BaTiFeO@NiFeO nanocomposites can be synchronously developed. Thus, the production of ultrasensitive electrochemical nano-systems for the determination of hydrogen peroxide is of extensive significance.

摘要

采用控制溶胶-凝胶工艺和在 600°C 下煅烧,化学合成了具有椭圆形纳米形态的有才二相铁氧体/铁电体 BaTi.Fe.O@NiFeO (BFT@NFO)。系统研究了 NiFeO (NFO) 纳米粒子屏蔽对 BaTi.Fe.O (BTF) 纳米钙钛矿的微结构、相变、热和相对介电常数的影响。X 射线衍射图谱和全谱软件显示了 BaTiFeO 六方相的形成。TEM 和 SEM 图像表明,BaTi0.Fe.O 的涂层已成功地用精致的纳米椭圆形 NiFeO 形状进行了控制。NFO 屏蔽可以显著提高 BFT@NFO 亚铁磁纳米复合材料的热稳定性和相对介电常数,并降低居里温度。热重分析和光学分析用于测试热稳定性并估计有效光学参数。磁性研究表明,与体系统相比,NiFeO NPs 的饱和磁化强度降低,这归因于表面自旋无序。在此,使用化学调整的纳米椭圆形钛酸钡-铁@镍铁氧体纳米复合材料构建了对过氧化物氧化检测的敏感电化学传感器,并进行了特性研究。最后,BFT@NFO 表现出优异的电化学性能,这可以归因于该化合物具有两个电化学活性成分和/或颗粒的纳米椭圆形结构,通过可能的氧化态和协同效应进一步改善电化学性能。结果表明,当 BTF 被 NFO 纳米粒子屏蔽时,纳米椭圆形 BaTiFeO@NiFeO 纳米复合材料的热、介电和电化学性能可以同步得到发展。因此,开发用于测定过氧化氢的超灵敏电化学纳米系统具有广泛的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/3b2ceb4baab1/41598_2023_36076_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/211b7ff5b850/41598_2023_36076_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/daa8503eff5c/41598_2023_36076_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/4dfdf306cea2/41598_2023_36076_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/474052fc549f/41598_2023_36076_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/9bcdc011764e/41598_2023_36076_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/f86c4ba5116e/41598_2023_36076_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/7ae384cdd8fd/41598_2023_36076_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/5e69edfdb7f8/41598_2023_36076_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/be5a71577e8c/41598_2023_36076_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/ad45b7e5e035/41598_2023_36076_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/9e529ce9c970/41598_2023_36076_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/8be65e04a5a7/41598_2023_36076_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/7f90d68511c0/41598_2023_36076_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/04a8a107a123/41598_2023_36076_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/3b2ceb4baab1/41598_2023_36076_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/211b7ff5b850/41598_2023_36076_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/daa8503eff5c/41598_2023_36076_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/4dfdf306cea2/41598_2023_36076_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/474052fc549f/41598_2023_36076_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/9bcdc011764e/41598_2023_36076_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/f86c4ba5116e/41598_2023_36076_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/7ae384cdd8fd/41598_2023_36076_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/5e69edfdb7f8/41598_2023_36076_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/be5a71577e8c/41598_2023_36076_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/ad45b7e5e035/41598_2023_36076_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/9e529ce9c970/41598_2023_36076_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/8be65e04a5a7/41598_2023_36076_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/7f90d68511c0/41598_2023_36076_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/04a8a107a123/41598_2023_36076_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b42c/10239493/3b2ceb4baab1/41598_2023_36076_Fig15_HTML.jpg

相似文献

[1]
Construction and characterization of nano-oval BaTiFeO@NiFeO nanocomposites as an effective platform for the determination of HO.

Sci Rep. 2023-6-3

[2]
Electrical and optical properties of nickel ferrite/polyaniline nanocomposite.

J Adv Res. 2014-1-27

[3]
The Effect of Annealing Temperature on the Synthesis of Nickel Ferrite Films as High-Capacity Anode Materials for Lithium Ion Batteries.

Nanomaterials (Basel). 2021-11-29

[4]
Nanocomposites Based on Polyethylene and Nickel Ferrite: Preparation, Characterization, and Properties.

Polymers (Basel). 2023-10-4

[5]
Preparation of Cotton Linters' Aerogel-Based C/NiFeO Photocatalyst for Efficient Degradation of Methylene Blue.

Nanomaterials (Basel). 2022-6-11

[6]
The study of structural properties of carbon nanotubes decorated with NiFe₂O₄ nanoparticles and application of nano-composite thin film as H₂S gas sensor.

Mater Sci Eng C Mater Biol Appl. 2014-11

[7]
Tuning bandgap and surface wettability of NiFeO driven by phase transition.

Sci Rep. 2018-1-22

[8]
A Facile Solution Combustion and Calcination Process for the Preparation of Magnetic NiFe₂O₄/SiO₂ Nanocomposites.

J Nanosci Nanotechnol. 2018-6-1

[9]
Effect of Transition Metal Doping on the Structural, Morphological, and Magnetic Properties of NiFeO.

Materials (Basel). 2022-4-20

[10]
Investigations of Structural, Magnetic, and Electrochemical Properties of NiFeO Nanoparticles as Electrode Materials for Supercapacitor Applications.

Materials (Basel). 2023-6-12

引用本文的文献

[1]
Sci-tech analysis and related research on three glass beads unearthed from M686 in the Qin cemetery of Warring States Period in Hejia, Zhouling.

PLoS One. 2025-8-29

[2]
Structural, optical, and electrochemical properties of tungsten-doped cadmium zinc phosphate nanoporous materials for energy storage and peroxide detection.

RSC Adv. 2025-5-12

[3]
Impact of Dy on the microstructural, electrical, and magnetic properties of topological FeBiYSe nanocrystals.

RSC Adv. 2025-4-9

[4]
Nanohexagonal iron barium titanate nanoparticles surface-modified NiFeO composite screen-printed electrode for enzymatic glucose monitoring.

RSC Adv. 2024-11-1

[5]
The effect of Zn doping on the structure, phase transformation and electric properties of 0.5BZT-0.5BCT materials.

Heliyon. 2024-7-3

[6]
Antioxidant-rich brilliant polymeric nanocomposites for quick and efficient non-enzymatic hydrogen peroxide sensor.

RSC Adv. 2024-4-23

[7]
Advancing energy storage and supercapacitor applications through the development of Li-doped MgTiO perovskite nano-ceramics.

Sci Rep. 2024-1-22

[8]
Humidity sensing using ZnNaCuTiO spinel nanostructures.

Sci Rep. 2024-1-4

本文引用的文献

[1]
Ecofriendly synthesis and characterization of Ni codoped silica magnesium zirconium copper nanoceramics for wastewater treatment applications.

Sci Rep. 2022-6-14

[2]
Fluorometric enhancement of the detection of HO using different organic substrates and a peroxidase-mimicking polyoxometalate.

RSC Adv. 2019-4-17

[3]
Multitasking Performance of FeO/BaTiO/Epoxy Resin Hybrid Nanocomposites.

Materials (Basel). 2022-2-26

[4]
Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications.

Sensors (Basel). 2021-10-1

[5]
Multiferroic ABO Transition Metal Oxides: a Rare Interaction of Ferroelectricity and Magnetism.

Nanoscale Res Lett. 2019-4-24

[6]
A Chemiluminescent Method for the Detection of H₂O₂ and Glucose Based on Intrinsic Peroxidase-Like Activity of WS₂ Quantum Dots.

Molecules. 2019-2-14

[7]
A novel sensitive amperometric choline biosensor based on multiwalled carbon nanotubes and gold nanoparticles.

Talanta. 2017-2-21

[8]
Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode.

Biosens Bioelectron. 2015-1-8

[9]
Highly sensitive graphene-Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection.

Anal Chem. 2014-10-7

[10]
Methods for detection and measurement of hydrogen peroxide inside and outside of cells.

Mol Cells. 2010-6-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索