文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Advancing energy storage and supercapacitor applications through the development of Li-doped MgTiO perovskite nano-ceramics.

作者信息

Magar Hend S, Mansour A M, Hammad Ali B Abou

机构信息

Applied Organic Chemistry Department, National Research Centre (NRC), 33 El‑Bohouth St., Dokki, 12622, Cairo, Egypt.

Solid State Physics Department, Physics Research Institute, National Research Centre, 33 El Bohouth St., Dokki, 12622, Giza, Egypt.

出版信息

Sci Rep. 2024 Jan 22;14(1):1849. doi: 10.1038/s41598-024-52262-6.


DOI:10.1038/s41598-024-52262-6
PMID:38253766
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10803294/
Abstract

Perovskite oxide materials, specifically MgTiO (MT) and Li-doped MgTiO (MTxLi), were synthesized via a sol-gel method and calcination at 800 °C. This study explores the impact of varying Li doping levels (x = 0, 0.01, 0.05, and 0.1) on the crystalline structure and properties of MgTiO. X-ray diffraction analysis revealed a well-defined rhombohedral MgTiO phase. Optical diffuse reflectance measurements provided insights into energy gap values, refractive index, and dielectric constant. Li doping enhanced the electrical properties of MgTiO, with a notable phase transition observed at 50 °C. The study investigated impedance and AC conductivity under varying temperature and frequency conditions (25-120 °C, 4 Hz to 8 MHz). Electrochemical analysis through cyclic voltammetry and electrochemical impedance spectroscopy confirmed highly electrocatalytic properties for MTxLi, particularly when modified onto screen-printed electrodes. This work not only advances the understanding of Li-doped MgTiO nanostructures but also highlights their significant potential for direct electrochemical applications, particularly in the realm of energy storage.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/173a0125bf41/41598_2024_52262_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/df1067297e58/41598_2024_52262_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/4d723cdcf138/41598_2024_52262_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/c82fa386d633/41598_2024_52262_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/8d8cc33dffac/41598_2024_52262_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/022a284ae53b/41598_2024_52262_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/3523c24a8b39/41598_2024_52262_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/34b8c685340b/41598_2024_52262_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/13c083dd8496/41598_2024_52262_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/70a700b9d3ce/41598_2024_52262_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/c4c692708628/41598_2024_52262_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/85ba43945562/41598_2024_52262_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/833d41b79772/41598_2024_52262_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/3d42e20ad860/41598_2024_52262_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/ec77ddcea7f8/41598_2024_52262_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/173a0125bf41/41598_2024_52262_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/df1067297e58/41598_2024_52262_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/4d723cdcf138/41598_2024_52262_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/c82fa386d633/41598_2024_52262_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/8d8cc33dffac/41598_2024_52262_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/022a284ae53b/41598_2024_52262_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/3523c24a8b39/41598_2024_52262_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/34b8c685340b/41598_2024_52262_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/13c083dd8496/41598_2024_52262_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/70a700b9d3ce/41598_2024_52262_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/c4c692708628/41598_2024_52262_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/85ba43945562/41598_2024_52262_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/833d41b79772/41598_2024_52262_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/3d42e20ad860/41598_2024_52262_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/ec77ddcea7f8/41598_2024_52262_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d9/10803294/173a0125bf41/41598_2024_52262_Fig15_HTML.jpg

相似文献

[1]
Advancing energy storage and supercapacitor applications through the development of Li-doped MgTiO perovskite nano-ceramics.

Sci Rep. 2024-1-22

[2]
Charge transfer and X-ray absorption investigations in aluminium and copper co-doped zinc oxide nanostructure for perovskite solar cell electrodes.

Sci Rep. 2023-7-4

[3]
Optical and Electrochemical Applications of Li-Doped NiO Nanostructures Synthesized via Facile Microwave Technique.

Materials (Basel). 2020-7-2

[4]
Electrical conductivity and electrochemical studies of Cr-doped MoO nanoflakes for energy storage applications.

J Solid State Electrochem. 2023

[5]
Facile Biogenic synthesis of Europium doped lanthanum silicate nanoparticles as novel supercapacitor electrodes for efficient energy storage applications.

Heliyon. 2024-9-16

[6]
Effect of manganese doping on structural, optical, morphological, and dielectric properties of Ba(TiMn)O lead-free ceramics for energy storage in supercapacitors.

Environ Sci Pollut Res Int. 2024-11

[7]
Effects of yttrium doping on structural, electrical and optical properties of barium titanate ceramics.

Heliyon. 2022-9-6

[8]
Nanocomposites with graft copolymer-templated mesoporous MgTiO3 perovskite for CO2 capture applications.

ACS Appl Mater Interfaces. 2013-7-2

[9]
Deposition of gold nanoparticles on electrospun MgTiO3 ceramic nanofibers.

J Nanosci Nanotechnol. 2006-2

[10]
Investigating Fe-doped BaNiMnFeO ( = 0, 0.2) ceramics: insights into electrical and dielectric behaviors.

RSC Adv. 2024-4-18

引用本文的文献

[1]
Accurate, affordable, and easy electrochemical detection of ascorbic acid in fresh fruit juices and pharmaceutical samples using an electroactive gelatin sulfonamide.

RSC Adv. 2024-12-17

[2]
Decoupling Variable Capacitance and Diffusive Components of Active Solid-Liquid Interfaces with Flex Points.

ACS Meas Sci Au. 2024-8-29

[3]
A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence.

Materials (Basel). 2024-2-27

本文引用的文献

[1]
Construction and characterization of nano-oval BaTiFeO@NiFeO nanocomposites as an effective platform for the determination of HO.

Sci Rep. 2023-6-3

[2]
Non-enzymatic disposable electrochemical sensors based on CuO/CoO@MWCNTs nanocomposite modified screen-printed electrode for the direct determination of urea.

Sci Rep. 2023-2-4

[3]
A novel gallium oxide nanoparticles-based sensor for the simultaneous electrochemical detection of Pb, Cd and Hg ions in real water samples.

Sci Rep. 2022-11-23

[4]
Defects, dopants and Mg diffusion in MgTiO.

Sci Rep. 2019-3-13

[5]
A novel sensitive amperometric choline biosensor based on multiwalled carbon nanotubes and gold nanoparticles.

Talanta. 2017-2-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索