Suppr超能文献

血液中循环的遗传异常细胞的存在可预测肺内不确定结节个体的肺癌风险。

The presence of circulating genetically abnormal cells in blood predicts risk of lung cancer in individuals with indeterminate pulmonary nodules.

机构信息

LungLife AI, Inc, 2545 W. Hillcrest Drive, Suite 140, Thousand Oaks, CA, USA.

Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

BMC Pulm Med. 2023 Jun 5;23(1):193. doi: 10.1186/s12890-023-02433-4.

Abstract

PURPOSE

Computed tomography is the standard method by which pulmonary nodules are detected. Greater than 40% of pulmonary biopsies are not lung cancer and therefore not necessary, suggesting that improved diagnostic tools are needed. The LungLB™ blood test was developed to aid the clinical assessment of indeterminate nodules suspicious for lung cancer. LungLB™ identifies circulating genetically abnormal cells (CGACs) that are present early in lung cancer pathogenesis.

METHODS

LungLB™ is a 4-color fluorescence in-situ hybridization assay for detecting CGACs from peripheral blood. A prospective correlational study was performed on 151 participants scheduled for a pulmonary nodule biopsy. Mann-Whitney, Fisher's Exact and Chi-Square tests were used to assess participant demographics and correlation of LungLB™ with biopsy results, and sensitivity and specificity were also evaluated.

RESULTS

Participants from Mount Sinai Hospital (n = 83) and MD Anderson (n = 68), scheduled for a pulmonary biopsy were enrolled to have a LungLB™ test. Additional clinical variables including smoking history, previous cancer, lesion size, and nodule appearance were also collected. LungLB™ achieved 77% sensitivity and 72% specificity with an AUC of 0.78 for predicting lung cancer in the associated needle biopsy. Multivariate analysis found that clinical and radiological factors commonly used in malignancy prediction models did not impact the test performance. High test performance was observed across all participant characteristics, including clinical categories where other tests perform poorly (Mayo Clinic Model, AUC = 0.52).

CONCLUSION

Early clinical performance of the LungLB™ test supports a role in the discrimination of benign from malignant pulmonary nodules. Extended studies are underway.

摘要

目的

计算机断层扫描是检测肺结节的标准方法。超过 40%的肺部活检不是肺癌,因此没有必要,这表明需要改进诊断工具。LungLB™ 血液检测旨在帮助临床评估疑似肺癌的不确定结节。LungLB™ 可识别早期肺癌发病机制中存在的循环遗传异常细胞 (CGAC)。

方法

LungLB™ 是一种用于检测外周血中 CGAC 的 4 色荧光原位杂交检测方法。对 151 名计划进行肺部结节活检的参与者进行了前瞻性相关性研究。采用 Mann-Whitney、Fisher's Exact 和 Chi-Square 检验评估参与者的人口统计学特征以及 LungLB™ 与活检结果的相关性,并评估了敏感性和特异性。

结果

来自西奈山医院(n=83)和 MD 安德森癌症中心(n=68)的参与者被招募进行 LungLB™ 检测,以进行肺部活检。还收集了其他临床变量,包括吸烟史、既往癌症、病变大小和结节外观。LungLB™ 在预测相关针吸活检中的肺癌方面具有 77%的敏感性和 72%的特异性,AUC 为 0.78。多变量分析发现,常用于恶性肿瘤预测模型的临床和影像学因素不会影响测试性能。在所有参与者特征中均观察到高测试性能,包括其他测试表现不佳的临床类别(Mayo 诊所模型,AUC=0.52)。

结论

LungLB™ 检测的早期临床性能支持其在区分良性和恶性肺结节中的作用。正在进行扩展研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ed8/10240808/7aaa6ac03e4f/12890_2023_2433_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验