Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA.
Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA.
Sci Rep. 2023 Jun 6;13(1):9205. doi: 10.1038/s41598-023-34850-0.
A custom segmentation workflow was applied to ex vivo high-field MR images of rat brains acquired following in vivo intraventricular contrast agent infusion to generate maps of the perivascular spaces (PVS). The resulting perivascular network segmentations enabled analysis of perivascular connections to the ventricles, parenchymal solute clearance, and dispersive solute transport within PVS. Numerous perivascular connections between the brain surface and the ventricles suggest the ventricles integrate into a PVS-mediated clearance system and raise the possibility of cerebrospinal fluid (CSF) return from the subarachnoid space to the ventricles via PVS. Assuming rapid solute exchange between the PVS and CSF spaces primarily by advection, the extensive perivascular network decreased the mean clearance distance from parenchyma to the nearest CSF compartment resulting in an over 21-fold reduction in the estimated diffusive clearance time scale, irrespective of solute diffusivity. This corresponds to an estimated diffusive clearance time scale under 10 min for amyloid-beta which suggests that the widespread distribution of PVS may render diffusion an effective parenchymal clearance mechanism. Additional analysis of oscillatory solute dispersion within PVS indicates that advection rather than dispersion is likely the primary transport mechanism for dissolved compounds greater than 66 kDa in the long (> 2 mm) perivascular segments identified here, although dispersion may be significant for smaller compounds in shorter perivascular segments.
采用定制的分割工作流程对大鼠脑的体内脑室对比剂输注后离体高磁场 MR 图像进行处理,以生成血管周围空间 (PVS) 的图。生成的血管周围网络分割使能够分析与脑室的血管周围连接、实质溶质清除率和 PVS 内弥散性溶质转运。大脑表面和脑室之间有许多血管周围连接,这表明脑室整合到 PVS 介导的清除系统中,并提出了通过 PVS 从蛛网膜下腔返回脑室的脑脊液 (CSF) 的可能性。假设 PVS 和 CSF 空间之间的溶质交换主要通过平流进行,广泛的血管周围网络减少了从实质到最近 CSF 隔室的平均清除距离,导致估计的弥散清除时间尺度增加了 21 倍以上,而与溶质扩散率无关。这相当于淀粉样蛋白-β的估计弥散清除时间尺度小于 10 分钟,这表明 PVS 的广泛分布可能使扩散成为有效的实质清除机制。对 PVS 内振荡性溶质弥散的进一步分析表明,对于此处鉴定的长 (>2mm) 血管周围段中大于 66 kDa 的溶解化合物,平流可能是主要的运输机制,而不是弥散,尽管对于较短的血管周围段中的较小化合物,弥散可能是重要的。