Suppr超能文献

糖酵解相关液流网络模型的敏感性分析。

Sensitivity analysis on a network model of glymphatic flow.

机构信息

Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA.

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

J R Soc Interface. 2022 Jun;19(191):20220257. doi: 10.1098/rsif.2022.0257. Epub 2022 Jun 1.

Abstract

Intracranial cerebrospinal and interstitial fluid (ISF) flow and solute transport have important clinical implications, but limited access to the brain interior leaves gaping holes in human understanding of the nature of these neurophysiological phenomena. Models can address some gaps, but only insofar as model inputs are accurate. We perform a sensitivity analysis using a Monte Carlo approach on a lumped-parameter network model of cerebrospinal and ISF in perivascular and extracellular spaces in the murine brain. We place bounds on model predictions given the uncertainty in input parameters. Péclet numbers for transport in penetrating perivascular spaces (PVSs) and within the parenchyma are separated by at least two orders of magnitude. Low permeability in penetrating PVSs requires unrealistically large driving pressure and/or results in poor perfusion and are deemed unlikely. The model is most sensitive to the permeability of penetrating PVSs, a parameter whose value is largely unknown, highlighting an important direction for future experiments. Until the value of the permeability of penetrating PVSs is more accurately measured, the uncertainty of any model that includes flow in penetrating PVSs is so large that absolute numbers have little meaning and practical application is limited.

摘要

颅内脑脊髓液和间质液(ISF)的流动和溶质转运具有重要的临床意义,但由于人类对大脑内部的了解有限,因此存在这些神经生理现象本质的巨大空白。模型可以解决一些空白,但仅限于模型输入准确的情况下。我们使用蒙特卡罗方法对鼠脑血管周围和细胞外空间的脑脊液和 ISF 的集总参数网络模型进行了敏感性分析。我们根据输入参数的不确定性为模型预测设置了界限。穿透性血管周围空间(PVS)和实质内的传输的 Peclet 数至少相差两个数量级。穿透性 PVS 的低渗透性需要不切实际的大驱动力和/或导致灌注不良,被认为不太可能。该模型对穿透性 PVS 的渗透性最为敏感,而穿透性 PVS 的渗透性值在很大程度上是未知的,这突显了未来实验的一个重要方向。在穿透性 PVS 的渗透性值得到更准确的测量之前,任何包括穿透性 PVS 内流动的模型的不确定性都非常大,以至于绝对数值意义不大,实际应用受到限制。

相似文献

1
Sensitivity analysis on a network model of glymphatic flow.糖酵解相关液流网络模型的敏感性分析。
J R Soc Interface. 2022 Jun;19(191):20220257. doi: 10.1098/rsif.2022.0257. Epub 2022 Jun 1.

引用本文的文献

2
Advection and diffusion in perivascular and extracellular spaces in the brain.大脑血管周围和细胞外空间中的平流与扩散。
J R Soc Interface. 2025 May;22(226):20250010. doi: 10.1098/rsif.2025.0010. Epub 2025 May 21.
4
Cerebrospinal Fluid Flow.脑脊液流动
Annu Rev Fluid Mech. 2023;55:237-264. doi: 10.1146/annurev-fluid-120720-011638. Epub 2022 Sep 28.
7
A brain-wide solute transport model of the glymphatic system.脑内全域溶质转运模型的糖酵解系统。
J R Soc Interface. 2024 Oct;21(219):20240369. doi: 10.1098/rsif.2024.0369. Epub 2024 Oct 23.

本文引用的文献

2
A hydraulic resistance model for interstitial fluid flow in the brain.一种脑内细胞间液流动的流体阻力模型。
J R Soc Interface. 2022 Jan;19(186):20210812. doi: 10.1098/rsif.2021.0812. Epub 2022 Jan 26.
9
Surface periarterial spaces of the mouse brain are open, not porous.小鼠脑表面动脉周围间隙是开放的,而非多孔的。
J R Soc Interface. 2020 Nov;17(172):20200593. doi: 10.1098/rsif.2020.0593. Epub 2020 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验