Simula Research Laboratory, Department of Numerical Analysis and Scientific Computing, Lysaker, Norway.
Department of Mathematics, University of Oslo, Oslo, Norway.
PLoS One. 2020 Dec 29;15(12):e0244442. doi: 10.1371/journal.pone.0244442. eCollection 2020.
Flow of cerebrospinal fluid (CSF) in perivascular spaces (PVS) is one of the key concepts involved in theories concerning clearance from the brain. Experimental studies have demonstrated both net and oscillatory movement of microspheres in PVS (Mestre et al. (2018), Bedussi et al. (2018)). The oscillatory particle movement has a clear cardiac component, while the mechanisms involved in net movement remain disputed. Using computational fluid dynamics, we computed the CSF velocity and pressure in a PVS surrounding a cerebral artery subject to different forces, representing arterial wall expansion, systemic CSF pressure changes and rigid motions of the artery. The arterial wall expansion generated velocity amplitudes of 60-260 μm/s, which is in the upper range of previously observed values. In the absence of a static pressure gradient, predicted net flow velocities were small (<0.5 μm/s), though reaching up to 7 μm/s for non-physiological PVS lengths. In realistic geometries, a static systemic pressure increase of physiologically plausible magnitude was sufficient to induce net flow velocities of 20-30 μm/s. Moreover, rigid motions of the artery added to the complexity of flow patterns in the PVS. Our study demonstrates that the combination of arterial wall expansion, rigid motions and a static CSF pressure gradient generates net and oscillatory PVS flow, quantitatively comparable with experimental findings. The static CSF pressure gradient required for net flow is small, suggesting that its origin is yet to be determined.
脑脊髓液(CSF)在血管周围间隙(PVS)中的流动是与大脑清除相关理论所涉及的关键概念之一。实验研究已经证明了微球在 PVS 中的净和振荡运动(Mestre 等人,2018 年;Bedussi 等人,2018 年)。振荡粒子运动具有明显的心脏成分,而涉及净运动的机制仍存在争议。我们使用计算流体动力学,针对不同的力,计算了受大脑动脉周围 PVS 中的 CSF 速度和压力,这些力代表动脉壁扩张、系统 CSF 压力变化和动脉的刚性运动。动脉壁扩张产生的速度幅度为 60-260 μm/s,处于先前观察到的值的上限范围内。在不存在静态压力梯度的情况下,预测的净流速很小(<0.5 μm/s),尽管对于非生理 PVS 长度,可达 7 μm/s。在现实的几何形状中,生理上合理幅度的静态全身压力增加足以引起 20-30 μm/s 的净流速。此外,动脉的刚性运动增加了 PVS 中流动模式的复杂性。我们的研究表明,动脉壁扩张、刚性运动和静态 CSF 压力梯度的组合会产生净和振荡的 PVS 流动,与实验结果在数量上相当。产生净流动所需的静态 CSF 压力梯度很小,表明其来源尚待确定。