Department of Statistics, Florida State University, Tallahassee, FL, USA.
Department of Statistics, Rice University, Houston, TX, USA.
Neuroimage. 2023 Aug 1;276:120214. doi: 10.1016/j.neuroimage.2023.120214. Epub 2023 Jun 5.
Our understanding of the structure of the brain and its relationships with human traits is largely determined by how we represent the structural connectome. Standard practice divides the brain into regions of interest (ROIs) and represents the connectome as an adjacency matrix having cells measuring connectivity between pairs of ROIs. Statistical analyses are then heavily driven by the (largely arbitrary) choice of ROIs. In this article, we propose a human trait prediction framework utilizing a tractography-based representation of the brain connectome, which clusters fiber endpoints to define a data-driven white matter parcellation targeted to explain variation among individuals and predict human traits. This leads to Principal Parcellation Analysis (PPA), representing individual brain connectomes by compositional vectors building on a basis system of fiber bundles that captures the connectivity at the population level. PPA eliminates the need to choose atlases and ROIs a priori, and provides a simpler, vector-valued representation that facilitates easier statistical analysis compared to the complex graph structures encountered in classical connectome analyses. We illustrate the proposed approach through applications to data from the Human Connectome Project (HCP) and show that PPA connectomes improve power in predicting human traits over state-of-the-art methods based on classical connectomes, while dramatically improving parsimony and maintaining interpretability. Our PPA package is publicly available on GitHub, and can be implemented routinely for diffusion image data.
我们对大脑结构及其与人类特征之间关系的理解在很大程度上取决于我们如何表示结构连接组。标准做法是将大脑划分为感兴趣的区域 (ROI),并将连接组表示为邻接矩阵,其中的单元格测量 ROI 对之间的连接。然后,统计分析主要受到 (很大程度上是任意的) ROI 选择的驱动。在本文中,我们提出了一种利用基于束追踪的大脑连接组表示来预测人类特征的框架,该框架通过聚类纤维末端来定义一个数据驱动的白质分割,旨在解释个体之间的变异并预测人类特征。这导致了主分割分析 (PPA),通过构建在纤维束基础系统上的组合向量来表示个体大脑连接组,该系统捕获了群体水平的连接。PPA 消除了预先选择图谱和 ROI 的需要,并提供了一种更简单的向量值表示,与经典连接组分析中遇到的复杂图结构相比,更便于进行统计分析。我们通过应用于人类连接组计划 (HCP) 的数据来说明所提出的方法,并表明 PPA 连接组在预测人类特征方面的能力优于基于经典连接组的最新方法,同时极大地提高了简约性并保持了可解释性。我们的 PPA 包在 GitHub 上公开可用,并可以为扩散图像数据常规实现。