Suppr超能文献

临床人工智能在社区儿科学中的前景与挑战。

The promises and challenges of clinical AI in community paediatric medicine.

作者信息

Singh Devin, Nagaraj Sujay, Daniel Ryan, Flood Colleen, Kulik Dina, Flook Robert, Goldenberg Anna, Brudno Michael, Stedman Ian

机构信息

Hospital for Sick Children, Toronto, Ontario, Canada.

Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.

出版信息

Paediatr Child Health. 2023 Mar 28;28(4):212-217. doi: 10.1093/pch/pxac080. eCollection 2023 Jul.

Abstract

The widespread adoption of virtual care technologies has quickly reshaped healthcare operations and delivery, particularly in the context of community medicine. In this paper, we use the virtual care landscape as a point of departure to envision the promises and challenges of artificial intelligence (AI) in healthcare. Our analysis is directed towards community care practitioners interested in learning more about how AI can change their practice along with the critical considerations required to integrate AI into their practice. We highlight examples of how AI can enable access to new sources of clinical data while augmenting clinical workflows and healthcare delivery. AI can help optimize how and when care is delivered by community practitioners while also improving practice efficiency, accessibility, and the overall quality of care. Unlike virtual care, however, AI is still missing many of the key enablers required to facilitate adoption into the community care landscape and there are challenges we must consider and resolve for AI to successfully improve healthcare delivery. We discuss several critical considerations, including data governance in the clinic setting, healthcare practitioner education, regulation of AI in healthcare, clinician reimbursement, and access to both technology and the internet.

摘要

虚拟护理技术的广泛应用迅速重塑了医疗保健运营和服务,尤其是在社区医学背景下。在本文中,我们以虚拟护理领域为出发点,展望人工智能(AI)在医疗保健领域的前景与挑战。我们的分析针对有兴趣深入了解人工智能如何改变其实践以及将人工智能整合到其实践中所需的关键考虑因素的社区护理从业者。我们重点介绍了人工智能如何在增加临床工作流程和医疗服务的同时,能够获取新的临床数据源的示例。人工智能可以帮助优化社区从业者提供护理的方式和时间,同时还能提高实践效率、可及性和整体护理质量。然而,与虚拟护理不同,人工智能仍缺少许多促进其融入社区护理领域所需的关键推动因素,并且我们必须考虑并解决一些挑战,以便人工智能能够成功改善医疗服务。我们讨论了几个关键考虑因素,包括临床环境中的数据治理、医疗保健从业者教育、医疗保健领域人工智能的监管、临床医生报销以及技术和互联网的获取。

相似文献

1
The promises and challenges of clinical AI in community paediatric medicine.临床人工智能在社区儿科学中的前景与挑战。
Paediatr Child Health. 2023 Mar 28;28(4):212-217. doi: 10.1093/pch/pxac080. eCollection 2023 Jul.
9
Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare.解开伦理谜团:医疗保健领域的人工智能
Cureus. 2023 Aug 10;15(8):e43262. doi: 10.7759/cureus.43262. eCollection 2023 Aug.

本文引用的文献

3
Ethical Machine Learning in Healthcare.医疗保健中的伦理机器学习。
Annu Rev Biomed Data Sci. 2021 Jul;4:123-144. doi: 10.1146/annurev-biodatasci-092820-114757. Epub 2021 May 6.
4
When smartwatches contribute to health anxiety in patients with atrial fibrillation.当智能手表加剧房颤患者的健康焦虑时。
Cardiovasc Digit Health J. 2020 Jul-Aug;1(1):9-10. doi: 10.1016/j.cvdhj.2020.06.004. Epub 2020 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验