Suppr超能文献

光子纳米喷射-干涉调制型全内反射结构显微镜有助于在细胞深处进行高通量、低背景的单分子定位显微镜观察。

PN-ImTLSM facilitates high-throughput low background single-molecule localization microscopy deep in the cell.

作者信息

Xue Boxin, Zhou Caiwei, Qin Yizhi, Li Yongzheng, Sun Yuao, Chang Lei, Shao Shipeng, Li Yongliang, Zhang Mengling, Sun Chaoying, He Renxi, Peter Su Qian, Sun Yujie

机构信息

State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.

College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

出版信息

Biophys Rep. 2021 Aug 31;7(4):313-325. doi: 10.52601/bpr.2021.210014.

Abstract

When imaging the nucleus structure of a cell, the out-of-focus fluorescence acts as background and hinders the detection of weak signals. Light-sheet fluorescence microscopy (LSFM) is a wide-field imaging approach which has the best of both background removal and imaging speed. However, the commonly adopted orthogonal excitation/detection scheme is hard to be applied to single-cell imaging due to steric hindrance. For LSFMs capable of high spatiotemporal single-cell imaging, the complex instrument design and operation largely limit their throughput of data collection. Here, we propose an approach for high-throughput background-free fluorescence imaging of single cells facilitated by the Immersion Tilted Light Sheet Microscopy (ImTLSM). ImTLSM is based on a light-sheet projected off the optical axis of a water immersion objective. With the illumination objective and the detection objective placed opposingly, ImTLSM can rapidly patrol and optically section multiple individual cells while maintaining single-molecule detection sensitivity and resolution. Further, the simplicity and robustness of ImTLSM in operation and maintenance enables high-throughput image collection to establish background removal datasets for deep learning. Using a deep learning model to train the mapping from epi-illumination images to ImTLSM illumination images, namely PN-ImTLSM, we demonstrated cross-modality fluorescence imaging, transforming the epi-illumination image to approach the background removal performance obtained with ImTLSM. We demonstrated that PN-ImTLSM can be generalized to large-field homogeneous illumination imaging, thereby further improving the imaging throughput. In addition, compared to commonly used background removal methods, PN-ImTLSM showed much better performance for areas where the background intensity changes sharply in space, facilitating high-density single-molecule localization microscopy. In summary, PN-ImTLSM paves the way for background-free fluorescence imaging on ordinary inverted microscopes.

摘要

在对细胞的细胞核结构进行成像时,离焦荧光会作为背景,阻碍微弱信号的检测。光片荧光显微镜(LSFM)是一种宽场成像方法,兼具去除背景和成像速度快的优点。然而,由于空间位阻,常用的正交激发/检测方案难以应用于单细胞成像。对于能够进行高时空单细胞成像的LSFM,复杂的仪器设计和操作在很大程度上限制了其数据采集通量。在此,我们提出一种通过浸没倾斜光片显微镜(ImTLSM)实现单细胞高通量无背景荧光成像的方法。ImTLSM基于从水浸物镜光轴投射出的光片。通过将照明物镜和检测物镜相对放置,ImTLSM能够在保持单分子检测灵敏度和分辨率的同时,快速扫描并对多个单个细胞进行光学切片。此外,ImTLSM在操作和维护方面的简单性和稳健性使得能够进行高通量图像采集,以建立用于深度学习的背景去除数据集。使用深度学习模型训练从落射照明图像到ImTLSM照明图像的映射,即PN-ImTLSM,我们展示了跨模态荧光成像,将落射照明图像转换为接近ImTLSM获得的背景去除性能。我们证明PN-ImTLSM可以推广到大视野均匀照明显微成像,从而进一步提高成像通量。此外,与常用的背景去除方法相比,PN-ImTLSM在背景强度在空间上急剧变化的区域表现出更好的性能,有利于高密度单分子定位显微镜成像。总之,PN-ImTLSM为普通倒置显微镜上的无背景荧光成像铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdc7/10233473/098036557403/br-7-4-313-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验