Suppr超能文献

单位四元数时间序列在分类问题中的平滑方法:在运动数据中的应用。

Smoothing method for unit quaternion time series in a classification problem: an application to motion data.

机构信息

Department of Political and Social Sciences, University of Pavia, Pavia, Italy.

BioData Science Unit, IRCCS Mondino Foundation, Pavia, Italy.

出版信息

Sci Rep. 2023 Jun 9;13(1):9366. doi: 10.1038/s41598-023-36480-y.

Abstract

Smoothing orientation data is a fundamental task in different fields of research. Different methods of smoothing time series in quaternion algebras have been described in the literature, but their application is still an open point. This paper develops a smoothing approach for smoothing quaternion time series to obtain good performance in classification problems. Starting from an existing method which involves an angular velocity transformation of unit quaternion time series, a new method which employ the logarithm function to transform the quaternion time series to a real three-dimensional time series is proposed. Empirical evidences achieved on real data set and artificially noisy data sets confirm the effectiveness of the proposed method compared with the classical approach based on angular velocity transformation. The R functions developed for this paper will be provided in a Github repository.

摘要

平滑方向数据是不同研究领域的基本任务。文献中已经描述了在四元数代数中平滑时间序列的不同方法,但它们的应用仍然是一个悬而未决的问题。本文提出了一种平滑四元数时间序列的方法,以在分类问题中获得良好的性能。从涉及单位四元数时间序列角速度变换的现有方法开始,提出了一种使用对数函数将四元数时间序列转换为实三维时间序列的新方法。在真实数据集和人为噪声数据集上获得的经验证据证实了与基于角速度变换的经典方法相比,所提出方法的有效性。本文开发的 R 函数将在 Github 存储库中提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/923a/10256761/2c5560b26118/41598_2023_36480_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验