Suppr超能文献

基于深度学习的 GPR151 激动剂活性预测分类模型。

Deep learning-based classification model for GPR151 activator activity prediction.

机构信息

Computer Network Information Center, Chinese Academy of Sciences, Dongsheng Sourth Street No.2, Haidian District, Beijing, 100190, China.

University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing, 101408, China.

出版信息

BMC Bioinformatics. 2023 Jun 9;24(1):245. doi: 10.1186/s12859-023-05369-y.

Abstract

BACKGROUND

GPR151 is a kind of protein belonging to G protein-coupled receptor family that is closely associated with a variety of physiological and pathological processes.The potential use of GPR151 as a therapeutic target for the management of metabolic disorders has been demonstrated in several studies, highlighting the demand to explore its activators further. Activity prediction serves as a vital preliminary step in drug discovery, which is both costly and time-consuming. Thus, the development of reliable activity classification model has become an essential way in the process of drug discovery, aiming to enhance the efficiency of virtual screening.

RESULTS

We propose a learning-based method based on feature extractor and deep neural network to predict the activity of GPR151 activators. We first introduce a new molecular feature extraction algorithm which utilizes the idea of bag-of-words model in natural language to densify the sparse fingerprint vector. Mol2vec method is also used to extract diverse features. Then, we construct three classical feature selection algorithms and three types of deep learning model to enhance the representational capacity of molecules and predict activity label by five different classifiers. We conduct experiments using our own dataset of GPR151 activators. The results demonstrate high classification accuracy and stability, with the optimal model Mol2vec-CNN significantly improving performance across multiple classifiers. The svm classifier achieves the best accuracy of 0.92 and F1 score of 0.76 which indicates promising applications for our method in the field of activity prediction.

CONCLUSION

The results suggest that the experimental design of this study is appropriate and well-conceived. The deep learning-based feature extraction algorithm established in this study outperforms traditional feature selection algorithm for activity prediction. The model developed can be effectively utilized in the pre-screening stage of drug virtual screening.

摘要

背景

GPR151 是一种属于 G 蛋白偶联受体家族的蛋白质,与多种生理和病理过程密切相关。几项研究表明,GPR151 作为治疗代谢紊乱的潜在靶点具有重要意义,这突显了进一步探索其激动剂的需求。活性预测是药物发现过程中的重要初步步骤,既昂贵又耗时。因此,开发可靠的活性分类模型已成为药物发现过程中的重要途径,旨在提高虚拟筛选的效率。

结果

我们提出了一种基于特征提取器和深度神经网络的基于学习的方法来预测 GPR151 激动剂的活性。我们首先引入了一种新的分子特征提取算法,该算法利用自然语言中的词袋模型思想来浓缩稀疏的指纹向量。还使用 Mol2vec 方法提取多种特征。然后,我们构建了三种经典特征选择算法和三种类型的深度学习模型,以增强分子的表示能力,并通过五个不同的分类器预测活性标签。我们使用自己的 GPR151 激动剂数据集进行实验。结果表明,分类精度和稳定性高,最优模型 Mol2vec-CNN 在多个分类器中显著提高了性能。SVM 分类器的准确率达到了 0.92,F1 分数为 0.76,这表明我们的方法在活性预测领域具有广阔的应用前景。

结论

研究结果表明,本研究的实验设计合理。本研究建立的基于深度学习的特征提取算法在活性预测方面优于传统特征选择算法。所开发的模型可有效用于药物虚拟筛选的预筛选阶段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验