Suppr超能文献

AiGPro:一种用于G蛋白偶联受体激动剂和拮抗剂分析的多任务模型。

AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist.

作者信息

Brahma Rahul, Moon Sunghyun, Shin Jae-Min, Cho Kwang-Hwi

机构信息

School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.

AzothBio, Rm. DA724 Hyundai Knowledge Industry Center, Hanam-si, Gyeonggi-do, Republic of Korea.

出版信息

J Cheminform. 2025 Jan 29;17(1):12. doi: 10.1186/s13321-024-00945-7.

Abstract

G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening. To address these issues, we introduce AiGPro, a novel multitask model designed to predict small molecule agonists (EC) and antagonists (IC) across the 231 human GPCRs, making it a first-in-class solution for large-scale GPCR profiling. Leveraging multi-scale context aggregation and bidirectional multi-head cross-attention mechanisms, our approach demonstrates that ensemble models may not be necessary for predicting complex GPCR states and small molecule interactions. Through extensive validation using stratified tenfold cross-validation, AiGPro achieves robust performance with Pearson's correlation coefficient of 0.91, indicating broad generalizability. This breakthrough sets a new standard in the GPCR studies, outperforming previous studies. Moreover, our first-in-class multi-tasking model can predict agonist and antagonist activities across a wide range of GPCRs, offering a comprehensive perspective on ligand bioactivity within this diverse superfamily. To facilitate easy accessibility, we have deployed a web-based platform for model access at https://aicadd.ssu.ac.kr/AiGPro . Scientific Contribution We introduce a deep learning-based multi-task model to generalize the agonist and antagonist bioactivity prediction for GPCRs accurately. The model is implemented on a user-friendly web server to facilitate rapid screening of small-molecule libraries, expediting GPCR-targeted drug discovery. Covering a diverse set of 231 GPCR targets, the platform delivers a robust, scalable solution for advancing GPCR-focused therapeutic development. The proposed framework incorporates an innovative dual-label prediction strategy, enabling the simultaneous classification of molecules as agonists, antagonists, or both. Each prediction is further accompanied by a confidence score, offering a quantitative measure of activity likelihood. This advancement moves beyond conventional models focusing solely on binding affinity, providing a more comprehensive understanding of ligand-receptor interactions. At the core of our model lies the Bi-Directional Multi-Head Cross-Attention (BMCA) module, a novel architecture that captures forward and backward contextual embeddings of protein and ligand features. By leveraging BMCA, the model effectively integrates structural and sequence-level information, ensuring a precise representation of molecular interactions. Results show that this approach is highly accurate in binding affinity predictions and consistent across diverse GPCR families. By unifying agonist and antagonist bioactivity prediction into a single model architecture, we bridge a critical gap in GPCR modeling. This enhances prediction accuracy and accelerates virtual screening workflows, offering a valuable and innovative solution for advancing GPCR-targeted drug discovery.

摘要

G蛋白偶联受体(GPCRs)在各种生理过程中发挥着至关重要的作用,使其成为颇具吸引力的药物研发靶点。与此同时,深度学习技术通过提供高效工具来加速配体的识别和优化,彻底改变了药物研发。然而,现有的GPCRs模型通常专注于单靶点或一小部分GPCRs,或者采用二元分类,限制了它们在高通量虚拟筛选中的适用性。为了解决这些问题,我们引入了AiGPro,这是一种新颖的多任务模型,旨在预测231种人类GPCRs中的小分子激动剂(EC)和拮抗剂(IC),使其成为大规模GPCR分析的同类首创解决方案。利用多尺度上下文聚合和双向多头交叉注意力机制,我们的方法表明集成模型对于预测复杂的GPCR状态和小分子相互作用可能并非必要。通过使用分层十折交叉验证进行广泛验证,AiGPro取得了稳健的性能,皮尔逊相关系数为0.91,表明具有广泛的通用性。这一突破为GPCR研究树立了新的标准,优于先前的研究。此外,我们的同类首创多任务模型可以预测广泛的GPCRs中的激动剂和拮抗剂活性,为这个多样化超家族中的配体生物活性提供全面的视角。为了便于访问,我们在https://aicadd.ssu.ac.kr/AiGPro部署了一个基于网络的模型访问平台。科学贡献我们引入了一种基于深度学习的多任务模型,以准确概括GPCRs的激动剂和拮抗剂生物活性预测。该模型在用户友好的网络服务器上实现,以促进小分子文库的快速筛选,加速以GPCR为靶点的药物研发。该平台涵盖了231种不同的GPCR靶点,为推进以GPCR为重点的治疗性开发提供了一个稳健、可扩展的解决方案。所提出的框架采用了创新的双标签预测策略,能够同时将分子分类为激动剂、拮抗剂或两者。每个预测还伴随着一个置信度分数,提供了活性可能性的定量度量。这一进展超越了仅专注于结合亲和力的传统模型,提供了对配体-受体相互作用更全面的理解。我们模型的核心是双向多头交叉注意力(BMCA)模块,这是一种新颖的架构,可捕获蛋白质和配体特征的正向和反向上下文嵌入。通过利用BMCA,该模型有效地整合了结构和序列水平的信息,确保了分子相互作用的精确表示。结果表明,这种方法在结合亲和力预测中非常准确,并且在不同的GPCR家族中具有一致性。通过将激动剂和拮抗剂生物活性预测统一到一个单一的模型架构中,我们弥合了GPCR建模中的一个关键差距。这提高了预测准确性,加速了虚拟筛选工作流程,为推进以GPCR为靶点的药物研发提供了一个有价值的创新解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f330/11780767/3ad6b72507d0/13321_2024_945_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验