Suppr超能文献

使用机器学习预测2型糖尿病患者的颈动脉内膜中层厚度异常

Using Machine Learning to Predict Abnormal Carotid Intima-Media Thickness in Type 2 Diabetes.

作者信息

Wu Chung-Ze, Huang Li-Ying, Chen Fang-Yu, Kuo Chun-Heng, Yeih Dong-Feng

机构信息

Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan.

Division of Endocrinology and Metabolism, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.

出版信息

Diagnostics (Basel). 2023 May 23;13(11):1834. doi: 10.3390/diagnostics13111834.

Abstract

Carotid intima-media thickness (c-IMT) is a reliable risk factor for cardiovascular disease risk in type 2 diabetes (T2D) patients. The present study aimed to compare the effectiveness of different machine learning methods and traditional multiple logistic regression in predicting c-IMT using baseline features and to establish the most significant risk factors in a T2D cohort. We followed up with 924 patients with T2D for four years, with 75% of the participants used for model development. Machine learning methods, including classification and regression tree, random forest, eXtreme gradient boosting, and Naïve Bayes classifier, were used to predict c-IMT. The results showed that all machine learning methods, except for classification and regression tree, were not inferior to multiple logistic regression in predicting c-IMT in terms of higher area under receiver operation curve. The most significant risk factors for c-IMT were age, sex, creatinine, body mass index, diastolic blood pressure, and duration of diabetes, sequentially. Conclusively, machine learning methods could improve the prediction of c-IMT in T2D patients compared to conventional logistic regression models. This could have crucial implications for the early identification and management of cardiovascular disease in T2D patients.

摘要

颈动脉内膜中层厚度(c-IMT)是2型糖尿病(T2D)患者心血管疾病风险的一个可靠危险因素。本研究旨在比较不同机器学习方法和传统多元逻辑回归在利用基线特征预测c-IMT方面的有效性,并确定T2D队列中最重要的危险因素。我们对924例T2D患者进行了四年的随访,其中75%的参与者用于模型开发。使用包括分类回归树、随机森林、极限梯度提升和朴素贝叶斯分类器在内的机器学习方法来预测c-IMT。结果显示,除分类回归树外,所有机器学习方法在预测c-IMT方面,就更高的受试者工作特征曲线下面积而言,并不逊色于多元逻辑回归。c-IMT最重要的危险因素依次为年龄、性别、肌酐、体重指数、舒张压和糖尿病病程。总之,与传统逻辑回归模型相比,机器学习方法可改善对T2D患者c-IMT的预测。这可能对T2D患者心血管疾病的早期识别和管理具有关键意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a2e/10252947/b75c7c962194/diagnostics-13-01834-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验