Suppr超能文献

应用于阻塞性睡眠呼吸暂停诊断的智能决策支持系统设计

Design of an Intelligent Decision Support System Applied to the Diagnosis of Obstructive Sleep Apnea.

作者信息

Casal-Guisande Manuel, Ceide-Sandoval Laura, Mosteiro-Añón Mar, Torres-Durán María, Cerqueiro-Pequeño Jorge, Bouza-Rodríguez José-Benito, Fernández-Villar Alberto, Comesaña-Campos Alberto

机构信息

Department of Design in Engineering, University of Vigo, 36208 Vigo, Spain.

Design, Expert Systems and Artificial Intelligent Solutions Group (DESAINS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain.

出版信息

Diagnostics (Basel). 2023 May 25;13(11):1854. doi: 10.3390/diagnostics13111854.

Abstract

Obstructive sleep apnea (OSA), characterized by recurrent episodes of partial or total obstruction of the upper airway during sleep, is currently one of the respiratory pathologies with the highest incidence worldwide. This situation has led to an increase in the demand for medical appointments and specific diagnostic studies, resulting in long waiting lists, with all the health consequences that this entails for the affected patients. In this context, this paper proposes the design and development of a novel intelligent decision support system applied to the diagnosis of OSA, aiming to identify patients suspected of suffering from the pathology. For this purpose, two sets of heterogeneous information are considered. The first one includes objective data related to the patient's health profile, with information usually available in electronic health records (anthropometric information, habits, diagnosed conditions and prescribed treatments). The second type includes subjective data related to the specific OSA symptomatology reported by the patient in a specific interview. For the processing of this information, a machine-learning classification algorithm and a set of fuzzy expert systems arranged in cascade are used, obtaining, as a result, two indicators related to the risk of suffering from the disease. Subsequently, by interpreting both risk indicators, it will be possible to determine the severity of the patients' condition and to generate alerts. For the initial tests, a software artifact was built using a dataset with 4400 patients from the Álvaro Cunqueiro Hospital (Vigo, Galicia, Spain). The preliminary results obtained are promising and demonstrate the potential usefulness of this type of tool in the diagnosis of OSA.

摘要

阻塞性睡眠呼吸暂停(OSA)的特征是睡眠期间上呼吸道反复出现部分或完全阻塞,是目前全球发病率最高的呼吸道疾病之一。这种情况导致了对医疗预约和特定诊断研究的需求增加,导致等待名单过长,给受影响的患者带来了所有这些健康后果。在此背景下,本文提出设计和开发一种应用于OSA诊断的新型智能决策支持系统,旨在识别疑似患有该疾病的患者。为此,考虑了两组异构信息。第一组包括与患者健康状况相关的客观数据,这些信息通常可在电子健康记录中获取(人体测量信息、习惯、诊断出的疾病和规定的治疗方法)。第二类包括患者在特定访谈中报告的与特定OSA症状相关的主观数据。为了处理这些信息,使用了机器学习分类算法和一组级联排列的模糊专家系统,结果获得了两个与患病风险相关的指标。随后,通过解释这两个风险指标,将能够确定患者病情的严重程度并生成警报。对于初始测试,使用来自阿尔瓦罗·孔克埃罗医院(西班牙加利西亚维戈)的4400名患者的数据集构建了一个软件工件。获得的初步结果很有希望,并证明了这种工具在OSA诊断中的潜在有用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad55/10252542/bee4b3c804af/diagnostics-13-01854-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验