Casal-Guisande Manuel, Fernández-Villar Alberto, Mosteiro-Añón Mar, Comesaña-Campos Alberto, Cerqueiro-Pequeño Jorge, Torres-Durán María
Fundación Pública Galega de Investigación Biomédica Galicia Sur, Hospital Álvaro Cunqueiro, Vigo, Spain.
NeumoVigo I+I, Instituto de Investigación Sanitaria Galicia Sur, Vigo, Spain.
Digit Health. 2024 Oct 3;10:20552076241272632. doi: 10.1177/20552076241272632. eCollection 2024 Jan-Dec.
High-dimensional databases make it difficult to apply traditional learning algorithms to biomedical applications. Recent developments in computer technology have introduced deep learning (DL) as a potential solution to these difficulties. This study presents a novel intelligent decision support system based on a novel interpretation of data formalisation from tabular data in DL techniques. Once defined, it is used to diagnose the severity of obstructive sleep apnoea, distinguishing between moderate to severe and mild/no cases.
The study uses a complete database extract from electronic health records of 2472 patients, including anthropometric data, habits, medications, comorbidities, and patient-reported symptoms. The novelty of this methodology lies in the initial processing of the patients' data, which is formalised into images. These images are then used as input to train a convolutional neural network (CNN), which acts as the inference engine of the system.
The initial tests of the system were performed on a set of 247 samples from the Pulmonary Department of the Álvaro Cunqueiro Hospital in Vigo (Galicia, Spain), with an AUC value of ≈ 0.8.
This study demonstrates the benefits of an intelligent decision support system based on a novel data formalisation approach that allows the use of advanced DL techniques starting from tabular data. In this way, the ability of CNNs to recognise complex patterns using visual elements such as gradients and contrasts can be exploited. This approach effectively addresses the challenges of analysing large amounts of tabular data and reduces common problems such as bias and variance, resulting in improved diagnostic accuracy.
高维数据库使得传统学习算法难以应用于生物医学领域。计算机技术的最新发展引入了深度学习(DL)作为解决这些难题的潜在方案。本研究基于对深度学习技术中表格数据的数据形式化的全新诠释,提出了一种新颖的智能决策支持系统。一旦定义完成,该系统即可用于诊断阻塞性睡眠呼吸暂停的严重程度,区分中度至重度病例与轻度/无病例。
本研究使用了从2472名患者的电子健康记录中提取的完整数据库,包括人体测量数据、习惯、用药情况、合并症以及患者报告的症状。该方法的新颖之处在于对患者数据的初始处理,即将其形式化为图像。然后将这些图像用作输入来训练卷积神经网络(CNN),该网络充当系统的推理引擎。
该系统的初步测试是在西班牙加利西亚维戈市阿尔瓦罗·孔克埃罗医院肺病科的247个样本上进行的,AUC值约为0.8。
本研究证明了基于一种新颖的数据形式化方法的智能决策支持系统的优势,该方法允许从表格数据开始使用先进的深度学习技术。通过这种方式,可以利用卷积神经网络利用梯度和对比度等视觉元素识别复杂模式的能力。这种方法有效地解决了分析大量表格数据的挑战,并减少了偏差和方差等常见问题,从而提高了诊断准确性。