Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
Molecules. 2023 May 30;28(11):4445. doi: 10.3390/molecules28114445.
Silver nanoparticles have become one of the most commercially and industrially relevant nanomaterials of the 21st century, owing to their potent antibacterial properties, as well as their useful catalytic and optical properties. Although many methods have been explored to produce AgNPs, we favor the photochemical approach using photoinitiators to produce AgNPs, owing to the high degree of control over reaction conditions, and the generation of so-called AgNP 'seeds' that can be used as-is, or as precursors for other silver nanostructures. In this work, we explore the scale-up of AgNP synthesis using flow chemistry and assess the usefulness of a range of industrial Norrish Type 1 photoinitiators in terms of flow compatibility and reaction time, as well as the resulting plasmonic absorption and morphologies. We establish that while all the photoinitiators used were able to generate AgNPs in a mixed aqueous/alcohol system, photoinitiators that generate ketyl radicals showed the greatest promise in terms of reaction times, while also showing greater flow compatibility compared to photoinitiators that generate 𝛼-aminoalkyl and α-hydroxybenzyl radicals. These findings help to establish a guideline for adapting photochemical AgNP syntheses to flow systems, helping to improve the scalability of the method in one of the largest industries in nanomaterial chemistry.
银纳米粒子已成为 21 世纪最具商业和工业相关性的纳米材料之一,这要归功于它们强大的抗菌性能以及有用的催化和光学性能。尽管已经探索了许多方法来生产 AgNPs,但我们更喜欢使用光引发剂的光化学方法来生产 AgNPs,因为这种方法可以高度控制反应条件,并生成所谓的 AgNP“种子”,这些“种子”可以直接使用,也可以作为其他银纳米结构的前体。在这项工作中,我们探索了使用流动化学扩大 AgNP 合成的规模,并评估了一系列工业 Norrish Type 1 光引发剂在流动兼容性和反应时间方面的有用性,以及由此产生的等离子体吸收和形态。我们确定,虽然所有使用的光引发剂都能够在混合水/醇系统中生成 AgNPs,但生成酮基自由基的光引发剂在反应时间方面最有前途,与生成 𝛼-氨基烷基和 α-羟基苄基自由基的光引发剂相比,其具有更大的流动兼容性。这些发现有助于为将光化学 AgNP 合成适应于流动系统建立一个指导方针,有助于在纳米材料化学中最大的产业之一中提高该方法的可扩展性。